Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
Answer: waves transport energy, not water. As a wave crest passes, the water particles move in circular paths. The movement of the floating inner tube is simulacra to the movement of the water particles. Water particles rise as a wave crest approaches.
Explanation:
Answer:
T = 693.147 minutes
Explanation:
The tank is being continuously stirred. So let the salt concentration of the tank at some time t be x in units of kg/L.
Therefore, the total salt in the tank at time t = 1000x kg
Brine water flows into the tank at a rate of 6 L/min which has a concentration of 0.1 kg/L
Hence, the amount of salt that is added to the tank per minute = 
Also, there is a continuous outflow from the tank at a rate of 6 L/min.
Hence, amount of salt subtracted from the tank per minute = 6x kg/min
Now, the rate of change of salt concentration in the tank = 
So, the rate of change of salt in the tank can be given by the following equation,

or, 
or, T = 693.147 min (time taken for the tank to reach a salt concentration
of 0.05 kg/L)
C. sound waves and water waves