First of all we will understand the question!!
<em>The</em><em> </em><em>question</em><em> </em><em>is</em><em> </em><em>saying</em><em> </em><em>that</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>given</em><em> </em><em>a</em><em> </em><em>function</em><em> </em><em>and</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>which</em><em> </em><em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>maximum</em><em> </em><em>profit</em><em>.</em><em>.</em><em>.</em><em> </em><em>Lets</em><em> </em><em>solve</em><em> </em><em>it</em><em> </em><em>by</em><em> </em><em>finding</em><em> </em><em>the</em><em> </em><em>extrema</em><em> </em><em>using</em><em> </em><em>the</em><em> </em><em>vertex</em>
<em>
</em>
- <u>Identify the coefficients a and b of the quadratic function</u>
<em>
</em>
- <u>Since a<0, the function has the maximum value at x, calculated by substituting a and b into x=-b/2a</u>
<u>
</u>
- <u>Solve</u><u> </u><u>the</u><u> </u><u>equation</u><u> </u><u>for</u><u> </u><u>x</u><u> </u>
<u>
</u>
- <u>The maximum of the quadratic function is at </u><u>x</u><u>=</u><u>3</u>
Any monomial without a written exponent has a degree of 1.
Answer:
-13
Step-by-step explanation:
2
(-3)
-1
(-3)
-4
(-3)
-7
(-3)
-10
(-3)
?
?=-13
Answer:
|96.55−0.02|= x
|96.55+0.02|=x
Step-by-step explanation:
Given that:
Measured length of beam = 96.55 cm
Measurement accuracy = plus or minus (± 0.02cm)
Limits of actual length of the beam:
Let limit of actual length = x
Lower limit :
|measured length - accuracy| = x
|96.55 - 0.02| = x
96.53) x
Upper limit :
|measured length + accuracy| = x
|96.55 + 0.02| = x
96.57 = x
Answer:
The answer is 
Step-by-step explanation:
The triangle isosceles has two equal angles and two equal sides
The triangle ABC is an isosceles triangle -----> see the attached figure
-----> radius of the circle
------> angles of the base of the isosceles triangle ABC
------> by central angle ( vertex angle of the isosceles triangle ABC)
Remember that
the sum of the internal angles of a triangle is equal to 
so


