1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio039 [100]
3 years ago
6

a store has 10 boxes of video games to sell how many days would it take them to sell those boxes if each day they sell 1/6 of a

box each day?
Mathematics
1 answer:
Ainat [17]3 years ago
3 0

Answer:

60 days

Step-by-step explanation:

1/6 = 0.16666666667

0.16666666667 x 60 = 10

You might be interested in
Find the values of x on the curve y = cos x 2 + sin x at which the tangent is horizontal. (let n be an integer. enter your answe
icang [17]
Y = cos^2(x) + sin(x)
y' = --2sin(x) + cos(x) = 0  first derivative.  Set to 0 for horizontal tangent.
-2sin(x) = -cos(x)
Tan(x) = 1/2
x = 26.565 degrees
8 0
3 years ago
PLEASE HELP ME TY&lt;3<br> !
Juliette [100K]

Answer:

27/111

Step-by-step explanation:

add 27+41+14+29 = 111

the number of child ticket over the total number of all the tickets on Saturday and Sunday

7 0
3 years ago
True or False: The variables in the equation 4x-(5y)2=64x-(5y)2=6 are 4, 5, and 6
marissa [1.9K]
False, variables can only be expressed through letters
7 0
3 years ago
Determine algebraically the zeros of f(x)=4x^3+32^2-36x
maw [93]

Answer:

x = 8

x = 1

Step-by-step explanation:

STEP 1:

Equation at the end of step 1

 (22x2 -  36x) +  32  = 0

STEP 2:

STEP 3: Pulling out like terms

3.1     Pull out like factors :

  4x2 - 36x + 32  =   4 • (x2 - 9x + 8)

Trying to factor by splitting the middle term

3.2     Factoring  x2 - 9x + 8

The first term is,  x2  its coefficient is  1 .

The middle term is,  -9x  its coefficient is  -9 .

The last term, "the constant", is  +8

Step-1 : Multiply the coefficient of the first term by the constant   1 • 8 = 8

Step-2 : Find two factors of  8  whose sum equals the coefficient of the middle term, which is   -9 .

     -8    +    -1    =    -9    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -8  and  -1

                    x2 - 8x - 1x - 8

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x-8)

             Add up the last 2 terms, pulling out common factors :

                    1 • (x-8)

Step-5 : Add up the four terms of step 4 :

                   (x-1)  •  (x-8)

            Which is the desired factorization

Equation at the end of step

3

:

 4 • (x - 1) • (x - 8)  = 0

STEP

4

:

Theory - Roots of a product

4.1    A product of several terms equals zero.

When a product of two or more terms equals zero, then at least one of the terms must be zero.

We shall now solve each term = 0 separately

In other words, we are going to solve as many equations as there are terms in the product

Any solution of term = 0 solves product = 0 as well.

Equations which are never true:

4.2      Solve :    4   =  0

This equation has no solution.

A a non-zero constant never equals zero.

Solving a Single Variable Equation:

4.3      Solve  :    x-1 = 0

Add  1  to both sides of the equation :

                     x = 1

Solving a Single Variable Equation:

4.4      Solve  :    x-8 = 0

Add  8  to both sides of the equation :

                     x = 8

Supplement : Solving Quadratic Equation Directly

Solving    x2-9x+8  = 0   directly

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Parabola, Finding the Vertex:

5.1      Find the Vertex of   y = x2-9x+8

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 1 , is positive (greater than zero).

For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is   4.5000  

Plugging into the parabola formula   4.5000  for  x  we can calculate the  y -coordinate :

 y = 1.0 * 4.50 * 4.50 - 9.0 * 4.50 + 8.0

or   y = -12.250

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = x2-9x+8

Axis of Symmetry (dashed)  {x}={ 4.50}

Vertex at  {x,y} = { 4.50,-12.25}

x -Intercepts (Roots) :

Root 1 at  {x,y} = { 1.00, 0.00}

Root 2 at  {x,y} = { 8.00, 0.00}

Solve Quadratic Equation by Completing The Square

5.2     Solving   x2-9x+8 = 0 by Completing The Square .

Subtract  8  from both side of the equation :

  x2-9x = -8

Now the clever bit: Take the coefficient of  x , which is  9 , divide by two, giving  9/2 , and finally square it giving  81/4

Add  81/4  to both sides of the equation :

 On the right hand side we have :

  -8  +  81/4    or,  (-8/1)+(81/4)

 The common denominator of the two fractions is  4   Adding  (-32/4)+(81/4)  gives  49/4

 So adding to both sides we finally get :

  x2-9x+(81/4) = 49/4

Adding  81/4  has completed the left hand side into a perfect square :

  x2-9x+(81/4)  =

  (x-(9/2)) • (x-(9/2))  =

 (x-(9/2))2

Things which are equal to the same thing are also equal to one another. Since

  x2-9x+(81/4) = 49/4 and

  x2-9x+(81/4) = (x-(9/2))2

then, according to the law of transitivity,

  (x-(9/2))2 = 49/4

We'll refer to this Equation as  Eq. #5.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

  (x-(9/2))2   is

  (x-(9/2))2/2 =

 (x-(9/2))1 =

  x-(9/2)

Now, applying the Square Root Principle to  Eq. #5.2.1  we get:

  x-(9/2) = √ 49/4

Add  9/2  to both sides to obtain:

  x = 9/2 + √ 49/4

Since a square root has two values, one positive and the other negative

  x2 - 9x + 8 = 0

  has two solutions:

 x = 9/2 + √ 49/4

  or

 x = 9/2 - √ 49/4

Note that  √ 49/4 can be written as

 √ 49  / √ 4   which is 7 / 2

Solve Quadratic Equation using the Quadratic Formula

5.3     Solving    x2-9x+8 = 0 by the Quadratic Formula .

According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                   

           - B  ±  √ B2-4AC

 x =   ————————

                     2A

 In our case,  A   =     1

                     B   =    -9

                     C   =   8

Accordingly,  B2  -  4AC   =

                    81 - 32 =

                    49

Applying the quadratic formula :

              9 ± √ 49

  x  =    —————

                   2

Can  √ 49 be simplified ?

Yes!   The prime factorization of  49   is

  7•7

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 49   =  √ 7•7   =

               ±  7 • √ 1   =

               ±  7

So now we are looking at:

          x  =  ( 9 ± 7) / 2

Two real solutions:

x =(9+√49)/2=(9+7)/2= 8.000

or:

x =(9-√49)/2=(9-7)/2= 1.000

Two solutions were found :

x = 8

x = 1

3 0
3 years ago
The measure of the quality of a person’s life based
vova2212 [387]
It is B.standard of living
7 0
3 years ago
Other questions:
  • Which net matches the figure?
    8·1 answer
  • Mr. Matthews is conducting job interviews. He has 5 candidates for a teaching job and must choose 3 of them to go on to the seco
    11·1 answer
  • Solve for p. 15.6 − (p ÷ 2) = 10.1
    13·2 answers
  • Which is a positively skewed distribution
    13·2 answers
  • The ratio of students to teachers at the preschool is 14 to 2. If there are 70 students, how many teachers are there?
    15·1 answer
  • Medium of 8,9, 10, 10, 11, 11, 11, 12, 13​
    12·1 answer
  • Solve the equation -16(d+1) =-20
    8·1 answer
  • 5n = 60 <br> n=__? HELP-!
    6·1 answer
  • Estimate 14.7923412^2 to the nearest hundred.
    14·1 answer
  • What is the area of the shape
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!