Answer:
- The graph has a minimum.
- The graph has a y-intercept at (0, -3).
- The solutions ... are -1 and 3.
- The vertex is located at (1, -4).
- In the equation, 'a' would be positive.
Step-by-step explanation:
When the graph has a low point, it has a minimum. 'a' is positive in that case. The coordinates of that low point are (1, -4). That point is the vertex.
The graph crosses the y-axis at y = -3, so the y-intercept is (0, -3).
The graph crosses the x-axis at (-1, 0) and (3, 0). These points represent the solution to the equation y = 0.
- The graph has a minimum.
- The graph has a y-intercept at (0, -3).
- The solutions ... are -1 and 3.
- The vertex is located at (1, -4).
- In the equation, 'a' would be positive.
Answer:
2 * 2 * 2 * 2 * 5.
Step-by-step explanation:
<h3>Answer: </h3>
The GCF is 4
The polynomial factors to 
==========================================================
Further explanation:
Ignore the x terms
We're looking for the GCF of 12, 4 and 20
Factor each to their prime factorization. It might help to do a factor tree, but this is optional.
- 12 = 2*2*3
- 4 = 2*2
- 20 = 2*2*5
Each factorization involves "2*2", which means 2*2 = 4 is the GCF here.
We can then factor like so

The distributive property pulls out that common 4. We can verify this by distributing the 4 back in, so we get the original expression back again.
The polynomial inside the parenthesis cannot be factored further. Proof of this can be found by looking at the roots and noticing that they aren't rational numbers (use the quadratic formula).
Answer:
(2,2)
Step-by-step explanation: