The correct simplification of the expression is 9c^2 i think.
Answer:
I dont know The answer sorry
Step-by-step explanation:
Answer:
456
Step-by-step explanation:
11.5 oz would be 2 standard deviations below the mean... z -score = -2 = .0228 (from Z-Score table)
22.8% of 2000 = 456
Answer:
Answer:
safe speed for the larger radius track u= √2 v
Explanation:
The sum of the forces on either side is the same, the only difference is the radius of curvature and speed.
Also given that r_1= smaller radius
r_2= larger radius curve
r_2= 2r_1..............i
let u be the speed of larger radius curve
now, \sum F = \frac{mv^2}{r_1} =\frac{mu^2}{r_2}∑F=
r
1
mv
2
=
r
2
mu
2
................ii
form i and ii we can write
v^2= \frac{1}{2} u^2v
2
=
2
1
u
2
⇒u= √2 v
therefore, safe speed for the larger radius track u= √2 v
For x^3-11x^2+33x+45 , we can make it an equation so <span>x^3-11x^2+33x+45=0. Next, we can find out if -1 or -3 is a factor. If -1 is a factor, than (x+1) is factorable. Using synthetic division, we get
x^2-12x+45
___ ________________________
x+1 | x^3-11x^2+33x+45
- (x^3+x^2)
_________________________
-12x^2+33x+45
- (-12x^2-12x)
______________
45x+45
-(45x+45)
___________
0
Since that works, it's either B or D. We just have to figure out when
</span> x^2-12x+45 equals 0, since there are 3 roots and we already found one. Using the quadratic formula, we end up getting (12+-sqrt(144-180))/2=
(12+-sqrt (-36))/2. Since sqrt(-36) is 6i, and 6i/2=3i, it's pretty clear that B is our answer