Answer:
![f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.](https://tex.z-dn.net/?f=f%28v%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7B3%7Dv%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%5C%209%5E3%20%5Cle%20v%20%5Cle%2010%5E3%7D%20%5Catop%20%7B0%2C%20elsewhere%7D%7D%20%5Cright.)
Step-by-step explanation:
Given
--- interval
Required
The probability density of the volume of the cube
The volume of a cube is:
![v = x^3](https://tex.z-dn.net/?f=v%20%3D%20x%5E3)
For a uniform distribution, we have:
![x \to U(a,b)](https://tex.z-dn.net/?f=x%20%5Cto%20U%28a%2Cb%29)
and
![f(x) = \left \{ {{\frac{1}{b-a}\ a \le x \le b} \atop {0\ elsewhere}} \right.](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7Bb-a%7D%5C%20a%20%5Cle%20x%20%5Cle%20b%7D%20%5Catop%20%7B0%5C%20elsewhere%7D%7D%20%5Cright.)
implies that:
![(a,b) = (9,10)](https://tex.z-dn.net/?f=%28a%2Cb%29%20%3D%20%289%2C10%29)
So, we have:
![f(x) = \left \{ {{\frac{1}{10-9}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7B10-9%7D%5C%209%20%5Cle%20x%20%5Cle%2010%7D%20%5Catop%20%7B0%5C%20elsewhere%7D%7D%20%5Cright.)
Solve
![f(x) = \left \{ {{\frac{1}{1}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7B1%7D%5C%209%20%5Cle%20x%20%5Cle%2010%7D%20%5Catop%20%7B0%5C%20elsewhere%7D%7D%20%5Cright.)
![f(x) = \left \{ {{1\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B1%5C%209%20%5Cle%20x%20%5Cle%2010%7D%20%5Catop%20%7B0%5C%20elsewhere%7D%7D%20%5Cright.)
Recall that:
![v = x^3](https://tex.z-dn.net/?f=v%20%3D%20x%5E3)
Make x the subject
![x = v^\frac{1}{3}](https://tex.z-dn.net/?f=x%20%3D%20v%5E%5Cfrac%7B1%7D%7B3%7D)
So, the cumulative density is:
![F(x) = P(x < v^\frac{1}{3})](https://tex.z-dn.net/?f=F%28x%29%20%3D%20P%28x%20%3C%20v%5E%5Cfrac%7B1%7D%7B3%7D%29)
becomes
![f(x) = \left \{ {{1\ 9 \le x \le v^\frac{1}{3} - 9} \atop {0\ elsewhere}} \right.](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B1%5C%209%20%5Cle%20x%20%5Cle%20v%5E%5Cfrac%7B1%7D%7B3%7D%20-%209%7D%20%5Catop%20%7B0%5C%20elsewhere%7D%7D%20%5Cright.)
The CDF is:
![F(x) = \int\limits^{v^\frac{1}{3}}_9 1\ dx](https://tex.z-dn.net/?f=F%28x%29%20%3D%20%5Cint%5Climits%5E%7Bv%5E%5Cfrac%7B1%7D%7B3%7D%7D_9%201%5C%20%20dx)
Integrate
![F(x) = [v]\limits^{v^\frac{1}{3}}_9](https://tex.z-dn.net/?f=F%28x%29%20%3D%20%5Bv%5D%5Climits%5E%7Bv%5E%5Cfrac%7B1%7D%7B3%7D%7D_9)
Expand
![F(x) = v^\frac{1}{3} - 9](https://tex.z-dn.net/?f=F%28x%29%20%3D%20v%5E%5Cfrac%7B1%7D%7B3%7D%20-%209)
The density function of the volume F(v) is:
![F(v) = F'(x)](https://tex.z-dn.net/?f=F%28v%29%20%3D%20F%27%28x%29)
Differentiate F(x) to give:
![F(x) = v^\frac{1}{3} - 9](https://tex.z-dn.net/?f=F%28x%29%20%3D%20v%5E%5Cfrac%7B1%7D%7B3%7D%20-%209)
![F'(x) = \frac{1}{3}v^{\frac{1}{3}-1}](https://tex.z-dn.net/?f=F%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7Dv%5E%7B%5Cfrac%7B1%7D%7B3%7D-1%7D)
![F'(x) = \frac{1}{3}v^{-\frac{2}{3}}](https://tex.z-dn.net/?f=F%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7Dv%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D)
![F(v) = \frac{1}{3}v^{-\frac{2}{3}}](https://tex.z-dn.net/?f=F%28v%29%20%3D%20%5Cfrac%7B1%7D%7B3%7Dv%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D)
So:
![f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.](https://tex.z-dn.net/?f=f%28v%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7B3%7Dv%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%5C%209%5E3%20%5Cle%20v%20%5Cle%2010%5E3%7D%20%5Catop%20%7B0%2C%20elsewhere%7D%7D%20%5Cright.)
Answer:
x = 2 y = 0
Step-by-step explanation:
Answer:
8
Step-by-step explanation:
if we take the 2 that is in the R.H.S and put it in L.H.S
it becomes 16÷2=8
D. works because if you work it out that means 2n=140 and then divide by 2 which means n=70 and the other number is 71
Answer:
do you mean the mode cause that would be 8 and the mean would be 6 and median would be 7 and the range would also be 7
the mad would be 2.2857 idk what your rounding to but i hope this helps
Step-by-step explanation: