Answer:
Hello your question is poorly written below is the well written question
Uranium, an important component of both nuclear weapons and nuclear reactors, has two major isotopes, U-238, which has a half-life of approximately 4.5 billion years, and U-235, which has a half-life of approximately 700 million years. Both were present in equal amounts at the time of the creation of the Earth, 4.5 billion years ago. How many years after the creation of the Earth had the amount of radiation from uranium decayed to half the amount present at the time of the creation of the Earth
Answer : 140 billion years
Explanation:
Given that :
U-238 h1/2 = 4.5 billion years
U-235 h1/2 = 700 million years
At the beginning both Isotopes where present in equal amount
Determine the T years before the amount of Uranium decays to Half
T = ? N'2 = N1 / 2
we know that N = No ( 1/2 )^h where h = time / half-life time
attached below is the detailed solution of the given problem
Answer:
0.4694 moles of CrCl₃
Explanation:
The balanced equation is:
Cr₂O₃(s) + 3CCl₄(l) → 2CrCl₃(s) + 3COCl₂(aq)
The stoichiometry of the equation is how much moles of the substances must react to form the products, and it's represented by the coefficients of the balanced equation. So, 1 mol of Cr₂O₃ must react with 3 moles of CCl₄ to form 2 moles of CrCl₃ and 3 moles of COCl₂.
The stoichiometry calculus must be on a moles basis. The compounds of interest are Cr₂O₃ and CrCl₃. The molar masses of the elements are:
MCr = 52 g/mol
MCl = 35.5 g/mol
MO = 16 g/mol
So, the molar mass of the Cr₂O₃ is = 2x52 + 3x35.5 = 210.5 g/mol.
The number of moles is the mass divided by the molar mass, so:
n = 49.4/210.5 = 0.2347 mol of Cr₂O₃.
For the stoichiometry:
1 mol of Cr₂O₃ ------------------- 2 moles of CrCl₃
0.2347 mol of Cr₂O₃----------- x
By a simple direct three rule:
x = 0.4694 moles of CrCl₃
Answer:
At the equivalence point, equal amounts of H+ and OH– ions will combine to form H2O, resulting in a pH of 7.0 (neutral). The pH at the equivalence point for this titration will always be 7.0, note that this is true only for titrations of strong acid with strong base.
Explanation:
Answer:
The answer is B an open system allows energy and mass to move in and out of it
Hope it helps