Answer:
462 paths from A to B
Step-by-step explanation:
The question is incomplete. However, a possible question is to determine the number of possible paths on the grid map.
The first step is to represent the grid map itself. (See attachment 1)
From the question, we understand that:
- Only right movement is allowed in the horizontal direction
- Only up movement is allowed in the vertical direction
There are a several number of ways to navigate through. However, one possible way is in attachment 2
In attachment 2,
- R represents the right movement
- U represents the up movement
And we have:
and 
The number of possible paths (N) is then calculated as:

Substitute values for N and U





<em>Hence, there are 462 possible paths from A to B</em>
Answer:
The solution to the equation system given is:
- <u>x = 2</u>
- <u>y = -1</u>
Step-by-step explanation:
First, we must know the equations given:
- 2x + 3y = 1
- 3x + y = 5
Following Crammer's Rule, we have the matrix form:
![\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] =\left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}1\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C3%261%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
Now we solve using the determinants:
![x=\frac{\left[\begin{array}{ccc}1&3\\5&1\end{array}\right]}{\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] } =\frac{(1*1)-(5*3)}{(2*1)-(3*3)} = \frac{1-15}{2-9} =\frac{-14}{-7} = 2](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%263%5C%5C5%261%5Cend%7Barray%7D%5Cright%5D%7D%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C3%261%5Cend%7Barray%7D%5Cright%5D%20%7D%20%3D%5Cfrac%7B%281%2A1%29-%285%2A3%29%7D%7B%282%2A1%29-%283%2A3%29%7D%20%3D%20%5Cfrac%7B1-15%7D%7B2-9%7D%20%3D%5Cfrac%7B-14%7D%7B-7%7D%20%3D%202)
![y=\frac{\left[\begin{array}{ccc}2&1\\3&5\end{array}\right]}{\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] } =\frac{(2*5)-(3*1)}{(2*1)-(3*3)}=\frac{10-3}{2-9} =\frac{7}{-7}=-1](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%5C%5C3%265%5Cend%7Barray%7D%5Cright%5D%7D%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C3%261%5Cend%7Barray%7D%5Cright%5D%20%7D%20%3D%5Cfrac%7B%282%2A5%29-%283%2A1%29%7D%7B%282%2A1%29-%283%2A3%29%7D%3D%5Cfrac%7B10-3%7D%7B2-9%7D%20%3D%5Cfrac%7B7%7D%7B-7%7D%3D-1)
Now, we can find the answer which is x= 2 and y= -1, we can replace these values in the equation to confirm the results are right, with the first equation:
- 2x + 3y = 1
- 2(2) + 3(-1)= 1
- 4 - 3 = 1
- 1 = 1
And, with the second equation:
- 3x + y = 5
- 3(2) + (-1) = 5
- 6 - 1 = 5
- 5 = 5
Answer:
Part A
x is 46°
Part B
Alternate angles are angles that are in relatively opposite locations relative to a transversal
Please see attached diagram showing alternate angles
Step-by-step explanation:
Part A
∠DRP = 110° (Given)
∠QPA = 64° (Given)
∠QPR =
Given that AB is parallel to CD, we have;
∠DRP is congruent to ∠APR (Alternate angles to a transversal RP of parallel lines AB and CD)
Therefore, ∠APR = 115°
∠APR = ∠QPA + ∠QPR (Angle addition postulate)
∴ 115° = 64° + ∠QPR
∠QPR = 110° - 64° = 46°
x = 46°
Part B.
Given that AB is parallel to CD, the lines common (that intersects) both lines are the transversal lines
The angles formed between the parallel lines and the transversal lines have special relationships based on their position with respect to each other
In the question, the angle 110° given between CD and the transversal RP, is found to at an alternate position to the angle ∠APR between the same transversal RP and AB and given that alternate angles are always equal, angle ∠APR is therefore also equal to 110°.
Answer:
The volume of the prism is 72 cubic cm.
Step-by-step explanation:
This we know because a triangle with sides of 3 units, 4 units, and 5 units must be a 3–4–5 right triangle, the catheti (“legs”) of which are 3 and 4 units. So the area of the base is
3 cm. * 4 cm. / 2 = 6 square cm.
Lastly, the volume of the prism is the base area multiplied by the height:
6 square cm. * 12 cm. = 72 cubic cm.