Molar mass:

Grams to moles:

Moles to atoms (Avogadro's number):


Answer:
Answer:
The mass of KClO₃ that will absorb the same heat as 5 g of KCl is 3.424 g
Explanation:
Here we have
Heat of solution of KClO₃ = + 41.38 kJ/mol.
Heat of solution of KCl (+17.24 kJ/mol)
Therefore, 1 mole of KCl absorbs +17.24 kJ during dissolution
Molar mass of KCl = 74.5513 g/mol
Molar mass of KClO₃ = 122.55 g/mol
74.5513 g of KCl absorbs +17.24 kJ during dissolution, therefore, 5 g will absorb

Therefore the amount of KClO₃ to be dissolved to absorb 1.156 kJ of energy is given by
122.55 g of KClO₃ absorbs + 41.38 kJ, therefore,

Therefore the mass of KClO₃ that will absorb the same heat as 5 g of KCl = 3.424 g.
Answer:
Al4C3 + 12H2O = 3CH4 + 4Al(OH)3
Explanation:
Not sure if any explanation is needed but always start with the most complex compound. In this case it is Al(OH)3. You can see that there is 4 Aluminiums on the other side so I would start by putting a 4 next to the Al(OH)3. This now gives me 12 Hydrogens and 12 Oxygens on the right side. I put a 3 next to the CH4 to balance the Carbons on the left side. This leaves me with 12 Oxygens and 24 Hydrogens on the right side. This ends up being perfect because I can put a 12 next to the H2O.
6+2=115 and its good it took test
Heat of vaporization of water will be required as water is already at it's boiling point thus heat required will be 540*10=5400 cal