Use basic trigonometric identities to simplify the expression: 2 sin (x) cos (x) sec (x) csc (x) = ?
1 answer:
Answer:

Step-by-step explanation:
Remember the identities:

Ginven the expression:

You need to substitute
and
into it:

Now, you need to simplify.
Remember that:

And:

Then, you get:

You might be interested in
Yhhvfffbjio,nvmhghhhhhhjihfexho
Answer:
x=-85
Step-by-step explanation:
x-18=-103
x=-103+18
x=-85
<span>C. 7x/9y is the correct answer.
</span>
Answer:
20
Step-by-step explanation:
When you add them all up and divide by seven, you get 20