![\bf \textit{sum of an infinite geometric serie}\\\\ \stackrel{for~~|r|\ \textless \ 1}{S=\sum\limits_{i=0}^{\infty}~a_1r^i\implies \cfrac{a_1}{1-r}}\qquad \begin{cases} a_1=\textit{first term's value}\\ r=\textit{common ratio}\\ ----------\\ a_1=42\\ r=\frac{3}{4} \end{cases} \\\\\\ S=\cfrac{42}{1-\frac{3}{4}}\implies S=\cfrac{42}{\frac{1}{4}}\implies S=164](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bsum%20of%20an%20infinite%20geometric%20serie%7D%5C%5C%5C%5C%0A%5Cstackrel%7Bfor~~%7Cr%7C%5C%20%5Ctextless%20%5C%201%7D%7BS%3D%5Csum%5Climits_%7Bi%3D0%7D%5E%7B%5Cinfty%7D~a_1r%5Ei%5Cimplies%20%5Ccfrac%7Ba_1%7D%7B1-r%7D%7D%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0Aa_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5C%0Ar%3D%5Ctextit%7Bcommon%20ratio%7D%5C%5C%0A----------%5C%5C%0Aa_1%3D42%5C%5C%0Ar%3D%5Cfrac%7B3%7D%7B4%7D%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0AS%3D%5Ccfrac%7B42%7D%7B1-%5Cfrac%7B3%7D%7B4%7D%7D%5Cimplies%20S%3D%5Ccfrac%7B42%7D%7B%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20S%3D164)
bearing in mind that, the geometric sequence is "convergent" only when |r|<1, or namely "r" is a fraction between 0 and 1.
Answer:
12x + 30 - 6 + 9
Step-by-step explanation:
Answer:
37999, 38100, 38300
Step-by-step explanation:
37999
38100
38300
The answer is the point lies directly on the regression line.