1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zimovet [89]
3 years ago
13

How many real solutions does a quadratic equation have if its discriminant is negative?

Mathematics
1 answer:
kvasek [131]3 years ago
3 0

Answer:

A

Step-by-step explanation:

Discriminant is given by

D = b^{2} -4ac

If it is negative then in quadratic formula the square root part becomes negative which makes the solution complex.

so there cannot be any real solution if the Discriminant is negative or less than 0 ,

The correct option for the given question is

A

You might be interested in
If anyone could help answer this question that would be great.
lys-0071 [83]
I believe the answer is 64
First break it off into 2 rectangles on is 4 width and 10 length other is 8 length and 10 width. Then multiple to find area 10•4=40 8•3=24 then add 40+24= 64
3 0
3 years ago
1. What are the intercepts of the equation 2x+3/2y+3z=6
Roman55 [17]
Use
Math
Way
It can tell u
Or
Photo
Math
4 0
3 years ago
Read 2 more answers
Explain how to multiply the following whole numbers 21 x 14
Lesechka [4]

Answer:

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Step-by-step explanation:

Given

21\:\times \:14

Line up the numbers

\begin{matrix}\space\space&2&1\\ \times \:&1&4\end{matrix}

Multiply the top number by the bottom number one digit at a time starting with the ones digit left(from right to left right)

Multiply the top number by the bolded digit of the bottom number

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

Multiply the bold numbers:    1×4=4

\frac{\begin{matrix}\space\space&2&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&\space\space&4\end{matrix}}

Multiply the bold numbers:    2×4=8

\frac{\begin{matrix}\space\space&\textbf{2}&1\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the top number by the bolded digit of the bottom number

\frac{\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the bold numbers:    1×1=1

\frac{\begin{matrix}\space\space&\space\space&2&\textbf{1}\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&\space\space&1&\space\space\end{matrix}}

Multiply the bold numbers:    2×1=2

\frac{\begin{matrix}\space\space&\space\space&\textbf{2}&1\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&2&1&\space\space\end{matrix}}

Add the rows to get the answer. For simplicity, fill in trailing zeros.

\frac{\begin{matrix}\space\space&\space\space&2&1\\ \space\space&\times \:&1&4\end{matrix}}{\begin{matrix}\space\space&0&8&4\\ \space\space&2&1&0\end{matrix}}

adding portion

\begin{matrix}\space\space&0&8&4\\ +&2&1&0\end{matrix}

Add the digits of the right-most column: 4+0=4

\frac{\begin{matrix}\space\space&0&8&\textbf{4}\\ +&2&1&\textbf{0}\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\textbf{4}\end{matrix}}

Add the digits of the right-most column: 8+1=9

\frac{\begin{matrix}\space\space&0&\textbf{8}&4\\ +&2&\textbf{1}&0\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{9}&4\end{matrix}}

Add the digits of the right-most column: 0+2=2

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Therefore,

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

6 0
3 years ago
The perimeters of square region S and rectangular region R are equal. If the sides of R are in the ratio 2 : 3, what is the rati
Ksivusya [100]
<h2>Answer:</h2>

The ratio of the area of region R to the area of region S is:

                    \dfrac{24}{25}

<h2>Step-by-step explanation:</h2>

The sides of R are in the ratio : 2:3

Let the length of R be: 2x

and the width of R be: 3x

i.e. The perimeter of R is given by:

Perimeter\ of\ R=2(2x+3x)

( Since, the perimeter of a rectangle with length L and breadth or width B is given by:

Perimeter=2(L+B) )

Hence, we get:

Perimeter\ of\ R=2(5x)

i.e.

Perimeter\ of\ R=10x

Also, let " s " denote the side of the square region.

We know that the perimeter of a square with side " s " is given by:

\text{Perimeter\ of\ square}=4s

Now, it is given that:

The perimeters of square region S and rectangular region R are equal.

i.e.

4s=10x\\\\i.e.\\\\s=\dfrac{10x}{4}\\\\s=\dfrac{5x}{2}

Now, we know that the area of a square is given by:

\text{Area\ of\ square}=s^2

and

\text{Area\ of\ Rectangle}=L\times B

Hence, we get:

\text{Area\ of\ square}=(\dfrac{5x}{2})^2=\dfrac{25x^2}{4}

and

\text{Area\ of\ Rectangle}=2x\times 3x

i.e.

\text{Area\ of\ Rectangle}=6x^2

Hence,

Ratio of the area of region R to the area of region S is:

=\dfrac{6x^2}{\dfrac{25x^2}{4}}\\\\=\dfrac{6x^2\times 4}{25x^2}\\\\=\dfrac{24}{25}

6 0
3 years ago
Read 2 more answers
The product of two positive integers plus their sum is 95. The integers are relatively prime, and each is less than 20. What is
creativ13 [48]
Let the fist integer be x, the second is x+20
the product of the numbers is:
x(x+20)
the sum of the numbers is:
x+x+20=2x+20
the sum of the above operations will give us:
2x+20+x^2+20x=95
x^2+22x+20=95
this can be written as quadratic to be:
x^2+22x-75=0
solving the above we get:
x=3 and x=-25
but since the integers should be positive, then x=3
the second number is x+20=3+20=23
hence the numbers are:
3 and 23
3 0
3 years ago
Other questions:
  • Solve for x <br> - 4x + 5 = -2x-1
    6·2 answers
  • How to solve for this problem
    6·2 answers
  • <img src="https://tex.z-dn.net/?f=%5Csqrt%7B25%7D" id="TexFormula1" title="\sqrt{25}" alt="\sqrt{25}" align="absmiddle" class="l
    7·2 answers
  • 41 feet to yards , express the answer as a mixed fraction
    8·2 answers
  • The nth term can of a geometric sequence?
    10·2 answers
  • 190 devided by 296 asap
    9·1 answer
  • If ∠ECD = 45° and ∠BED = 110° is ΔABE ~ ΔCDE? If so, by what criterion? A) yes, by AA criterion B) yes, by SAS criterion C) yes,
    14·2 answers
  • Graph the function. f(x)=2x^2-5<br> please help ill give you brainliest
    9·1 answer
  • Which statement can help build a person’s self-esteem? A. I am really proud of you B. You really disappointed me with your prese
    11·2 answers
  • Do I divide or multiple...
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!