Answer: g(x) = (1/2)3^-x reflection over y axis yields (-x,y)
Answer:
it needs to be less dense than water and weight needs to be equal to buoyant force.
Answer:
3.16 units
Step-by-step explanation:
It has been given that the triangles JKL and the triangle RST are congruent.
That implies that, the length of the side JK, KL, and JL is equivalent to the length of the sides RS, ST, and RT respectively.
Now, to find the length of JK we need to find the length of the side RS. The coordinates of the points R and S are
and
.
The length of the side RS is equal to the distance between point R and S.
RS 



Now that we have the length of the side RS, and the triangles JKL and RST are congruent therefore, the length of the side JK is 3.16 units.
Así, concluimos que la posición final del buzo será 7 metros bajo la superficie del agua.
<h3 /><h3>¿a qué profundidad se encuentra al final de su recorrido?</h3>
Primero, vamos a definir la superficie del agua como el 0 metros.
Sí sabemos que primero el buzo se sumerge 4 metros, entonces en este punto la posición del buzo es:
P = 0m - 4m = -4m
Luego el buzo sube 2 metros, entonces la nueva posición será:
P = -4m + 2m = -2m
Finalmente, el buzo desciende otros 5 metros, entonces la posición final del buzo será:
P = -2m - 5m = -7m
Así, concluimos que la posición final del buzo será 7 metros bajo la superficie del agua.
Sí quieres aprender mas sobre posiciones:
brainly.com/question/21853903
#SPJ1
Step-by-step explanation:
G(x) =4(2x)-6
G(x)=8x-6