780 seconds, or 13 minutes.
In the future, please use proper capitalization. There's a significant difference in the meaning between mV and MV. One of them indicated millivolts while the other indicates megavolts. For this problem, I'll make the following assumptions about the values presented. They are:
Total energy = 1.4x10^11 Joules (J)
Current per flash = 30 Columbs (C)
Potential difference = 30 Mega Volts (MV)
First, let's determine the power discharged by each bolt. That would be the current multiplied by the voltage, so
30 C * 30x10^6 V = 9x10^8 CV = 9x10^8 J
Now that we know how many joules are dissipated per flash, let's determine how flashes are needed.
1.4x10^11 / 9x10^8 = 1.56E+02 = 156
Since each flash takes 5 seconds, that means that it will take about 5 * 156 = 780 seconds which is about 780/60 = 13 minutes.
Answer:
Explanation:
Heat capacity A = 3 x heat capacity of B
initial temperature of A = 2 x initial temperature of B
TA = 2 TB
Let T be the final temperature of the system
Heat lost by A is equal to the heat gained by B
mass of A x specific heat of A x (TA - T) = mass of B x specific heat of B x ( T - TB)
heat capacity of A x ( TA - T) = heat capacity of B x ( T - TB)
3 x heat capacity of B x ( TA - T) = heat capacity of B x ( T - TB)
3 TA - 3 T = T - TB
6 TB + TB = 4 T
T = 1.75 TB

for a solid cylinder:

for a hollow cylinder:

I will look at the case of a hollow cylinder:

That is as far as i get.
The answer to number 1 is D and the answer for the second one is 2
^-^
Answer:
If we have large numbers (b is positive) or small numbers (b is negative), then this way ... 1, and V2i = 100 L, n2i = 5 + 2 + 1 = 8 in vessel 2. ... a good working substance in the barometer.