1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pychu [463]
4 years ago
6

What is a watt a unit of? power distance time light

Physics
2 answers:
Pachacha [2.7K]4 years ago
8 0

Answer: Watt is the unit of power

Explanation:

sergey [27]4 years ago
6 0

Answer:

I think the answer is A) Power

Explanation:

You might be interested in
Cars A and B are racing each other along the same straight road in the following manner: Car A has a head start and is a distanc
4vir4ik [10]

The question is incomplete. Here is the complete question.

Cars A nad B are racing each other along the same straight road in the following manner: Car A has a head start and is a distance D_{A} beyond the starting line at t = 0. The starting line is at x = 0. Car A travels at a constant speed v_{A}. Car B starts at the starting line but has a better engine than Car A and thus Car B travels at a constant speed v_{B}, which is greater than v_{A}.

Part A: How long after Car B started the race will Car B catch up with Car A? Express the time in terms of given quantities.

Part B: How far from Car B's starting line will the cars be when Car B passes Car A? Express your answer in terms of known quantities.

Answer: Part A: t=\frac{D_{A}}{v_{B}-v_{A}}

              Part B: x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Explanation: First, let's write an equation of motion for each car.

Both cars travels with constant speed. So, they are an uniform rectilinear motion and its position equation is of the form:

x=x_{0}+vt

where

x_{0} is initial position

v is velocity

t is time

Car A started the race at a distance. So at t = 0, initial position is D_{A}.

The equation will be:

x_{A}=D_{A}+v_{A}t

Car B started at the starting line. So, its equation is

x_{B}=v_{B}t

Part A: When they meet, both car are at "the same position":

D_{A}+v_{A}t=v_{B}t

v_{B}t-v_{A}t=D_{A}

t(v_{B}-v_{A})=D_{A}

t=\frac{D_{A}}{v_{B}-v_{A}}

Car B meet with Car A after t=\frac{D_{A}}{v_{B}-v_{A}} units of time.

Part B: With the meeting time, we can determine the position they will be:

x_{B}=v_{B}(\frac{D_{A}}{v_{B}-v_{A}} )

x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Since Car B started at the starting line, the distance Car B will be when it passes Car A is x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}} units of distance.

5 0
3 years ago
A 90. 0-kg ice hockey player hits a 0. 150-kg puck, giving the puck a velocity of 45. 0 m/s. If both are initially at rest and i
Mice21 [21]

The distance traveled by the hockey player is 0.025 m.

<h3>The principle of conservation of linear momentum;</h3>
  • The principle of conservation of linear momentum states that, the total momentum of an isolated system is always conserved.

The final velocity of the hockey play is calculated by applying the principle of conservation of linear momentum;

m_1v_1 = m_2 v_2\\\\v_1 = \frac{m_2 v_2}{m_1} \\\\v_1 = \frac{0.150 \times 45}{90} \\\\v_1 = 0.075 \ m/s

The time taken for the puck to reach 15 m is calculated as follows;

t = \frac{d}{v} \\\\t = \frac{15\ m}{45 \ m/s} \\\\t = 0.33 \ s

The distance traveled by the hockey player at the calculated time is;

d = vt\\\\d = 0.075 \ m/s \ \times 0.33 \ s\\\\d = 0.025 \ m

Learn more about conservation of linear momentum here: brainly.com/question/7538238

4 0
2 years ago
Which of the following is an example of the Doppler effect? A water bug on the surface of a pond is producing small ripples in t
noname [10]

Answer:

A police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase.

Explanation:

In Physics, Doppler effect can be defined as the change in frequency of a wave with respect to an observer in motion and moving relative to the source of the wave.

Simply stated, Doppler effect is the change in wave frequency as a result of the relative motion existing between a wave source and its observer.

The term "Doppler effect" was named after an Austrian mathematician and physicist known as Christian Johann Doppler while studying the starlight in relation to the movement of stars.

<em>The phenomenon of Doppler effects is generally applicable to both sound and light. </em>

An example of the Doppler effect is a police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase. This is so because when a sound object moves towards you, its sound waves frequency increases, thereby causing a higher pitch. However, if the sound object is moving away from the observer, it's sound waves frequency decreases and thus resulting in a lower pitch.

<em>Other fields were the Doppler effects are applied are; astronomy, flow management, vibration measurement, radars, satellite communications etc. </em>

3 0
3 years ago
Which of the following statements are true about magnets?
timama [110]
The correct answer is 3
4 0
3 years ago
If the rectangular barge is 3.0 m by 20.0 m and sits 0.70 m deep in the harbor, how deep will it sit in the river?
leva [86]

The harbour contains salt water while the river contains fresh water. So assuming that the densities of fresh water and salt water are:

density (salt water) = 1029 kg / m^3

density (fresh water) = 1000 kg / m^3

The amount of water (in mass) displaced by the barge should be equal in two waters.

mass displaced (salt water) = mass displaced (fresh water)

Since mass is also the product of density and volume, therefore:

<span>[density * volume]_salt water = [density * volume]_fresh water                 ---> 1</span>

 

First we calculate the amount of volume displaced in the harbour (salt water):

V = 3.0 m * 20.0 m * 0.70 m

V = 42 m^3 of salt water

Plugging in the values into equation 1:

1029 kg / m^3 * 42 m^3 = 1000 kg/m^3 * Volume fresh water

Volume fresh water displaced = 43.218 m^3

 

Therefore the depth of the barge in the river is:

43.218 m^3 = 3.0 m * 20.0 m * h

<span>h = 0.72 m        (ANSWER)</span>

8 0
4 years ago
Other questions:
  • If Jupiter has a composition similar to the sun, why is it not a star?
    15·1 answer
  • How does sound travel?
    8·2 answers
  • Three people pull simultaneously on a stubborn donkey. Jack pulls directly ahead of the donkey with a force of 79.9 N , Jill pul
    10·1 answer
  • Sally accelerates a 250 kg cart at 3 m/s/s. What must be
    14·1 answer
  • Jessica Jacob is driving down the road at 35 m/s. She sees a cop and slows to 20 m/s in only 2 seconds. What was her acceleratio
    5·1 answer
  • A 0.5 kg block of aluminum (caluminum=900J/kg⋅∘C) is heated to 200∘C. The block is then quickly placed in an insulated tub of co
    15·1 answer
  • The law of conservation of momentum states that the total momentum of interacting objects does not _____. This means the total m
    6·2 answers
  • Which graph shows uniform motion.​
    11·2 answers
  • How is an earthquake's origin and intensity identified?
    15·1 answer
  • A 50-g ball moving at 10 m/s in the +x direction suddenly collides head-on with a stationary ball of mass 100 g. If the collisio
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!