Potential energy U = mgh
Given h = 123 m,
mg = F = 780 N
Then
U = (123)(780)
= 95940
= 9.59 x 10^4
Answer:
The net Electric field at the mid point is 289.19 N/C
Given:
Q = + 71 nC = 
Q' = + 42 nC = 
Separation distance, d = 1.9 m
Solution:
To find the magnitude of electric field at the mid point,
Electric field at the mid-point due to charge Q is given by:



Now,
Electric field at the mid-point due to charge Q' is given by:



Now,
The net Electric field is given by:


Answer:
a. Weight of Object in Water = 20 N
b. Up thrust = 20 N
c. Weight of Water Displaced = 20 N
Explanation:
a.
The weight of the object remains same in the water as well. Because, the same force of gravity is acting there as well. Hence,
<u>Weight of Object in Water = 20 N</u>
<u></u>
b.
Since, the object floats on the water. Therefore, according to Archimedes' principle the up thrust force acting on the object must be equal to the weight of object:
Up thrust = Weight of object
<u>Up thrust = 20 N</u>
<u></u>
c.
From Archimedes' Principle, we know that the up thrust or the Buoyant force is equal to the weight of the water displaced by the object. therefore:
Weight of Water Displaced = Up thrust
<u>Weight of Water Displaced = 20 N</u>
We use about 38 percent of Earth's land surface for agriculture
- The bullet can travel about distance of (2115 m)
- Velocity can be regarded as the ratio of distance to time
- Velocity= (distance / time)
Given: velocity= 450 m/s
Time= 4.7s
- Distance= ( velocity × time)
<em>If we substitute the values</em>
= 2115 m
Therefore, the bullet can travel about 2115 m
Learn more at : brainly.com/question/13639113?referrer=searchResults