The answer to this question is 3.69
Answer:
instantaneous velocity is a velocity covered at an instant while average velocity is the change in distance/ the change in time taken
Since there are no external forces, including friction, act on the flatcar. after the sack rests on the flatcar, we would assume that momentum is conserved. This means that
total momentum of car before collision = total momentum of car after collision.
Recall,
momentum = mass x velocity
From the information given,
mass of car before collision = 2000
velocity of car before collision = 3
Thus,
total momentum of car before collision = 2000 x 3 = 6000
Also,
mass of sack = 500
mass of car and sack after collision = 500 + 2000 = 2500
velocity after collision = v
momentum after collision = 2500 x v = 2500v
Since momentum is conserved, then
6000 = 2500v
v = 6000/2500
v = 2.4
the speed of the flatcar is 2.4 m/s
Answer:
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Explanation:
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:

Where,
m = mass
m(i) = mass at inlet
m(o)= Mass at outlet
h(i)= Enthalpy at inlet
h(o)= Enthalpy at outlet
W = Work done
Q = Heat transferred
v(i) = Velocity at inlet
v(o)= Velocity at outlet
Z(i)= Height at inlet
Z(o)= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects

Using the relation T-P we can find the final temperature:


From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg