1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tomtit [17]
3 years ago
8

Angles 1 and 2 form a right angle.Which word describes their measures?

Mathematics
2 answers:
shusha [124]3 years ago
7 0

Answer:

Step-by-step explanation:

complementary angle- adds to 90°

Andreas93 [3]3 years ago
6 0

Answer:

90 degree angle because a right angle is always 90 degrees

You might be interested in
Michelle tried to solve an equation step by step. \begin{aligned} t-\dfrac35&=\dfrac45\\\\ t-\dfrac35+\dfrac35&=\dfrac45
koban [17]

Answer:

Step 2

Step-by-step explanation:

Michelle's step in trying to solve the equation is given below:

\begin{aligned} t-\dfrac35&=\dfrac45\\\\ t-\dfrac35+\dfrac35&=\dfrac45+\dfrac35&\green{\text{Step } 1}\\\\ t&=1&\blue{\text{Step } 2} \end{aligned}

Michelle made a mistake in Step 2.

The right hand side of Step 1:  \dfrac45+\dfrac35\neq 1

Rather, the correct sum is:

\dfrac45+\dfrac35=\dfrac75\\\\=1\dfrac25

4 0
4 years ago
Simplify each rational expression to lowest terms, specifying the values of xx that must be excluded to avoid division
k0ka [10]

Answer:

(a) \frac{x^2-6x+5}{x^2-3x-10}=\frac{x-1}{x+2}. The domain of this function is all real numbers not equal to -2 or 5.

(b) \frac{x^3+3x^2+3x+1}{x^3+2x^2-x}=1+\frac{x^2+4x+1}{x^3+2x^2-x}. The domain of this function is all real numbers not equal to 0, -1+\sqrt{2} or -1+\sqrt{2}.

(c) \frac{x^2-16}{x^2+2x-8}=\frac{x-4}{x-2}.The domain of this function is all real numbers not equal to 2 or -4.

(d) \frac{x^2-3x-10}{x^3+6x^2+12x+8}=\frac{x-5}{\left(x+2\right)^2}. The domain of this function is all real numbers not equal to -2.

(e) \frac{x^3+1}{x^2+1}=x+\frac{-x+1}{x^2+1}. The domain of this function is all real numbers.

Step-by-step explanation:

To reduce each rational expression to lowest terms you must:

(a) For \frac{x^2-6x+5}{x^2-3x-10}

\mathrm{Factor}\:x^2-6x+5\\\\x^2-6x+5=\left(x^2-x\right)+\left(-5x+5\right)\\x^2-6x+5=x\left(x-1\right)-5\left(x-1\right)\\\\\mathrm{Factor\:out\:common\:term\:}x-1\\x^2-6x+5=\left(x-1\right)\left(x-5\right)

\mathrm{Factor}\:x^2-3x-10\\\\x^2-3x-10=\left(x^2+2x\right)+\left(-5x-10\right)\\x^2-3x-10=x\left(x+2\right)-5\left(x+2\right)\\\\\mathrm{Factor\:out\:common\:term\:}x+2\\x^2-3x-10=\left(x+2\right)\left(x-5\right)

\frac{x^2-6x+5}{x^2-3x-10}=\frac{\left(x-1\right)\left(x-5\right)}{\left(x+2\right)\left(x-5\right)}

\mathrm{Cancel\:the\:common\:factor:}\:x-5\\\\\frac{x^2-6x+5}{x^2-3x-10}=\frac{x-1}{x+2}

The denominator in a fraction cannot be zero because division by zero is undefined. So we need to figure out what values of the variable(s) in the expression would make the denominator equal zero.

To find any values for x that would make the denominator = 0 you need to set the denominator = 0 and solving the equation.

x^2-3x-10=\left(x+2\right)\left(x-5\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x+2=0\\x=-2\\\\x-5=0\\x=5

The domain is the set of all possible inputs of a function which allow the function to work. Therefore the domain of this function is all real numbers not equal to -2 or 5.

(b) For \frac{x^3+3x^2+3x+1}{x^3+2x^2-x}

\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}x^3+3x^2+3x+1\mathrm{\:and\:the\:divisor\:}x^3+2x^2-x\mathrm{\::\:}\frac{x^3}{x^3}=1

Quotient = 1

\mathrm{Multiply\:}x^3+2x^2-x\mathrm{\:by\:}1:\:x^3+2x^2-x

\mathrm{Subtract\:}x^3+2x^2-x\mathrm{\:from\:}x^3+3x^2+3x+1\mathrm{\:to\:get\:new\:remainder}

Remainder = x^2+4x+1}

\frac{x^3+3x^2+3x+1}{x^3+2x^2-x}=1+\frac{x^2+4x+1}{x^3+2x^2-x}

  • The domain of this function is all real numbers not equal to 0, -1+\sqrt{2} or -1+\sqrt{2}.

x^3+2x^2-x=0\\\\x^3+2x^2-x=x\left(x^2+2x-1\right)=0\\\\\mathrm{Solve\:}\:x^2+2x-1=0:\quad x=-1+\sqrt{2},\:x=-1-\sqrt{2}

(c) For \frac{x^2-16}{x^2+2x-8}

x^2-16=\left(x+4\right)\left(x-4\right)

x^2+2x-8= \left(x-2\right)\left(x+4\right)

\frac{x^2-16}{x^2+2x-8}=\frac{\left(x+4\right)\left(x-4\right)}{\left(x-2\right)\left(x+4\right)}\\\\\frac{x^2-16}{x^2+2x-8}=\frac{x-4}{x-2}

  • The domain of this function is all real numbers not equal to 2 or -4.

x^2+2x-8=0\\\\x^2+2x-8=\left(x-2\right)\left(x+4\right)=0

(d) For \frac{x^2-3x-10}{x^3+6x^2+12x+8}

\mathrm{Factor}\:x^2-3x-10\\\left(x^2+2x\right)+\left(-5x-10\right)\\x\left(x+2\right)-5\left(x+2\right)

\mathrm{Apply\:cube\:of\:sum\:rule:\:}a^3+3a^2b+3ab^2+b^3=\left(a+b\right)^3\\\\a=x,\:\:b=2\\\\x^3+6x^2+12x+8=\left(x+2\right)^3

\frac{x^2-3x-10}{x^3+6x^2+12x+8}=\frac{\left(x+2\right)\left(x-5\right)}{\left(x+2\right)^3}\\\\\frac{x^2-3x-10}{x^3+6x^2+12x+8}=\frac{x-5}{\left(x+2\right)^2}

  • The domain of this function is all real numbers not equal to -2

x^3+6x^2+12x+8=0\\\\x^3+6x^2+12x+8=\left(x+2\right)^3=0\\x=-2

(e) For \frac{x^3+1}{x^2+1}

\frac{x^3+1}{x^2+1}=x+\frac{-x+1}{x^2+1}

  • The domain of this function is all real numbers.

x^2+1=0\\x^2=-1\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-1},\:x=-\sqrt{-1}

4 0
3 years ago
Which could be the measure of three angles of an acute triangle?
kvasek [131]

Answer: B: 70, 80, 30

Step-by-step explanation:

An acute triangle has all 3 angles at less than 90 degrees, therefore the answer is B because its the only one that has all three at <90

6 0
4 years ago
Help plz asap ????????????
jekas [21]

Answer:

6

hope it is ❤❤❤❤

THANK YOU.

8 0
3 years ago
Read 2 more answers
Find the total surface area.<br> Thanks for the help!
omeli [17]

Answer:

its 196.31

I have the same questions as you i got a 100, so heres the one for the 7cm 2cm and 6cm 111.68

4 0
3 years ago
Other questions:
  • P=irt how to solve that i was absent when they done this so yeah
    15·1 answer
  • 2x9x9x9x2x9 in index notation
    10·1 answer
  • The sum of two consecutive even integers is 138. Write an equation and solve
    12·1 answer
  • What is true in the solution 2 in 4x=2 in 8
    8·1 answer
  • The graph shows the function f(x).
    13·2 answers
  • I ordered 2000000 chicken nuggets and 500000 pounds of Mac and cheese how much chicken nuggets and Mac and cheese do i have all
    10·2 answers
  • Find the area of the thingy
    12·1 answer
  • Which of the following is the Perpendicular Bisector Theorem?
    8·1 answer
  • 1 Which equation is correct for cosignfon<br>​
    14·1 answer
  • A teacher asked her students to solve the equation t - 11 = 24. One student incorrectly said that the solution is 14.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!