Answer:
The factorization of
is 
Step-by-step explanation:
This is a case of factorization by <em>sum and difference of cubes</em>, this type of factorization applies only in binomials of the form
or
. It is easy to recognize because the coefficients of the terms are <u><em>perfect cube numbers</em></u> (which means numbers that have exact cubic root, such as 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, etc.) and the exponents of the letters a and b are multiples of three (such as 3, 6, 9, 12, 15, 18, etc.).
Let's solve the factorization of
by using the <em>sum and difference of cubes </em>factorization.
1.) We calculate the cubic root of each term in the equation
, and the exponent of the letter x is divided by 3.
![\sqrt[3]{729x^{15}} =9x^{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B729x%5E%7B15%7D%7D%20%3D9x%5E%7B5%7D)
then ![\sqrt[3]{10^{3}} =10](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B10%5E%7B3%7D%7D%20%3D10)
So, we got that
which has the form of
which means is a <em>sum of cubes.</em>
<em>Sum of cubes</em>

with
y 
2.) Solving the sum of cubes.


.
Answer:
- vertical scaling by a factor of 1/3 (compression)
- reflection over the y-axis
- horizontal scaling by a factor of 3 (expansion)
- translation left 1 unit
- translation up 3 units
Step-by-step explanation:
These are the transformations of interest:
g(x) = k·f(x) . . . . . vertical scaling (expansion) by a factor of k
g(x) = f(x) +k . . . . vertical translation by k units (upward)
g(x) = f(x/k) . . . . . horizontal expansion by a factor of k. When k < 0, the function is also reflected over the y-axis
g(x) = f(x-k) . . . . . horizontal translation to the right by k units
__
Here, we have ...
g(x) = 1/3f(-1/3(x+1)) +3
The vertical and horizontal transformations can be applied in either order, since neither affects the other. If we work left-to-right through the expression for g(x), we can see these transformations have been applied:
- vertical scaling by a factor of 1/3 (compression) . . . 1/3f(x)
- reflection over the y-axis . . . 1/3f(-x)
- horizontal scaling by a factor of 3 (expansion) . . . 1/3f(-1/3x)
- translation left 1 unit . . . 1/3f(-1/3(x+1))
- translation up 3 units . . . 1/3f(-1/3(x+1)) +3
_____
<em>Additional comment</em>
The "working" is a matter of matching the form of g(x) to the forms of the different transformations. It is a pattern-matching problem.
The horizontal transformations could also be described as ...
- translation right 1/3 unit . . . f(x -1/3)
- reflection over y and expansion by a factor of 3 . . . f(-1/3x -1/3)
The initial translation in this scenario would be reflected to a translation left 1/3 unit, then the horizontal expansion would turn that into a translation left 1 unit, as described above. Order matters.
1. The slope is -2/5 not 3-/10
Answer:
x+2y=12-------(1)
x-2y=3---------(2)
Adding equations 1 and 2
we get
2x=18
x=9
Equation 1
9+2y=15
2y=15-9
2y=6
y=3
The solution of the given system is x=9, y=3
Step-by-step explanation
Answer:
32
Step-by-step explanation:
take 128 divide by 4