The end behavior of the function y = x² is given as follows:
f(x) -> ∞ as x -> - ∞; f(x) -> ∞ as x -> - ∞.
<h3>How to identify the end behavior of a function?</h3>
The end behavior of a function is given by the limit of f(x) when x goes to both negative and positive infinity.
In this problem, the function is:
y = x².
When x goes to negative infinity, the limit is:
lim x -> - ∞ f(x) = (-∞)² = ∞.
Meaning that the function is increasing at the left corner of it's graph.
When x goes to positive infinity, the limit is:
lim x -> ∞ f(x) = (∞)² = ∞.
Meaning that the function is also increasing at the right corner of it's graph.
Thus the last option is the correct option regarding the end behavior of the function.
<h3>Missing information</h3>
We suppose that the function is y = x².
More can be learned about the end behavior of a function at brainly.com/question/24248193
#SPJ1
c. t = 18h
is the appropriate expression for t equals 18 times h.
A polar coordinate is that which can be written as (r, θ) where r is the radius and θ is the angle.
The radius, r, is also the hypotenuse of the right triangle that can be formed. Hence, it can be calculated through the equation,
r² = x² + y²
If we are to simplify this for the r alone, we have,
r = sqrt (x² + y²)
Substituting the known values,
r = sqrt ((4)² + (-4)²) = 4√2
The x and y can be related through the trigonometric function, tangent.
tan θ = y/x
To solve for θ
θ = tan⁻¹(y/x) = tan⁻¹(-4/4) = -45° = 315°
Hence, the polar coordinate is <em>(4√2, 315°)</em>
The quadratic formula solves for X so u can plot it on a graph. it solves for X by subtracting and another way by Adding so you get 2 x's