Answer: This is hard to do accurately, but here is my best assessment.
Explanation:
Experiment: B - describes how the experiment was done
Conclusion: A - The data support the prevailing hypothesis
Research: D - This is what we analyzed
Analysis: C - We compared the data
Answer: Option (b) is the correct answer.
Explanation:
A covalent compound is defined as the compound in which sharing of electrons take place between the combining atoms. Generally, when two or more non-metals chemically combine together the it will lead to the formation of a covalent compound.
For example, and HCl is also a covalent compound.
And, a compound in which transfer of electrons occur between the combining atoms is known as an ionic compound. Whenever, a metal chemically combines with a non-metal then it will always lead to the formation of an ionic compound.
For example, KI is an ionic compound.
Thus, we can conclude that and HCl are the two substances which are covalent compounds.
In response of what like what’s the full clear question
Answer:
Option 3. The catalyst does not affect the enthalpy change () of a reaction.
Explanation:
As its name suggests, the enthalpy change of a reaction () is the difference between the enthalpy of the products and the reactants.
On the other hand, a catalyst speeds up a reaction because it provides an alternative reaction pathway from the reactants to the products.
In effect, a catalyst reduces the activation energy of the reaction in both directions. The reactants and products of the reaction won't change. As a result, the difference in their enthalpies won't change, either. That's the same as saying that the enthalpy change of the reaction would stay the same.
Refer to an energy profile diagram. Enthalpy change of the reaction measures the difference between the two horizontal sections. Indeed, the catalyst lowered the height of the peak. However, that did not change the height of each horizontal section or the difference between them. Hence, the enthalpy change of the reaction stayed the same.