Answer:
The average kinetic energy of A is greater than that of B.
Explanation:
The temperature of an object is directly proportional to the average kinetic energy of the particles in the object. For instance, for an ideal gas, we have

where
KE is the kinetic energy
k is the Boltzmann constant
T the absolute temperature of the gas
Therefore, this means that in a hotter object the average kinetic energy of the particles is higher than the average kinetic energy of the particles in a colder object.
Moreover, the laws of thermodynamics tell us that heat is always transferred from a hotter object (higher temperature) to a colder object (lower temperature).
In this problem heat is transferred from sample A to sample B. Therefore, this means that object A has higher temperature, and therefore, higher average kinetic energy. So the correct answer is
The average kinetic energy of A is greater than that of B.
Answer:
The factor of increasing reaction rate is 1,85x10¹².
Explanation:
Using arrhenius formula:

Where k is rate constant; A is frecuency factor; Eₐ is activation energy; R is gas constant (0,008134 kJ/molK); T is temperature 25°C = 298,15K
Thus, replacing for an activation energy of 125 kJ/mol assuming A as 1:
k = 1,25x10⁻²²
When activation energy is 55kJ/mol:
k = 2,31x10⁻¹⁰
Thus, the factor of increasing reaction rate is:
2,31x10⁻¹⁰/1,25x10⁻²² =<em> 1,85x10¹²</em>
<em></em>
I hope it helps!
Answer:
554.86kj
Explanation: Since 1 mole of CaC2=15.14kj yield 1mole of C2H2
The enthalpy change of H2O is 2*285=570
570+-15.14=554.86kj
Hence Hp is 554.86kj
He=Hp
Answer: so the answer is A
Explanation: The relationship between an object's mass (m), its acceleration (a), and the applied force (f) is F=ma. ... This law requires that the direction of the acceleration vector is in the same direction as the force vectors.