Answer:
Correct option is
C
36.25
Modal class =30−40
So we have, l=30,f0=12,f1=32,f2=20 and h=10
⇒ Mode=l+2f1−f0f2f1−f0×h
=30+2×32−12−2032−12×10
=30+6.25
=36.25
∴ Mode =36.25
Solve each of the equations independently, then determine if the are continuous or discontinuous.
15≥-3x [start here]
-5≤x [divide both sides by (-3). *Dividing by a negative number means the direction of the sign changes!]
x≥-5 [just turned around for analysis]
Next equation:
2/3x≥-2 [start here]
x≥-2(3/2) [multiply both sides of the equation by the reciprocal, 3/2)
x≥-3
So, (according to the first equation) all values of x must be greater than, or equal to -5.
(According to the second equation) all values of x must be greater than, or equal to -3.
So, when graphed on a number line, both equations graph in the same direction, so they are continuous.
42
because 27+6(2.5)= 27 +15 = 42
65%...
26 divided by 40 = 0.65 x 100 = 65%
hope this helps!
6x10^-4
move 4 places to the left
The answer is 0.0006,