The mean absolute deviation of the scuba diver’s depth over the entire 25 min is 2.4 meters
<h3>What is mean absolute deviation?</h3>
It is defined as the measure to show the variation in data set in other words between the mean and every data value, the distance known as the MAD.
We have depths of the scuba diver, in meters
{−9, −18, −16, −13, −14}
We know the formula for the mean absolute deviation:

Here n is total number of observation
x is the elements in the data set
X is the mean of the data.
n = 5
x = -70/5 = -14
∑|x-X| = 12
MAD = 12/5 = 2.4 meters
Thus, the mean absolute deviation of the scuba diver’s depth over the entire 25 min is 2.4 meters.
Learn more about the mean absolute deviation here:
brainly.com/question/10528201
#SPJ1
Check the picture below.
based on the equation, if we set y = 0, we'd end up with 0 = 0.5(x-3)(x-k).
and that will give us two x-intercepts, at x = 3 and x = k.
since the triangle is made by the x-intercepts and y-intercepts, then the parabola most likely has another x-intercept on the negative side of the x-axis, as you see in the picture, so chances are "k" is a negative value.
now, notice the picture, those intercepts make a triangle with a base = 3 + k, and height = y, where "y" is on the negative side.
let's find the y-intercept by setting x = 0 now,
![\bf y=0.5(x-3)(x+k)\implies y=\cfrac{1}{2}(x-3)(x+k)\implies \stackrel{\textit{setting x = 0}}{y=\cfrac{1}{2}(0-3)(0+k)} \\\\\\ y=\cfrac{1}{2}(-3)(k)\implies \boxed{y=-\cfrac{3k}{2}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of a triangle}}{A=\cfrac{1}{2}bh}~~ \begin{cases} b=3+k\\ h=y\\ \quad -\frac{3k}{2}\\ A=1.5\\ \qquad \frac{3}{2} \end{cases}\implies \cfrac{3}{2}=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)](https://tex.z-dn.net/?f=%5Cbf%20y%3D0.5%28x-3%29%28x%2Bk%29%5Cimplies%20y%3D%5Ccfrac%7B1%7D%7B2%7D%28x-3%29%28x%2Bk%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bsetting%20x%20%3D%200%7D%7D%7By%3D%5Ccfrac%7B1%7D%7B2%7D%280-3%29%280%2Bk%29%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7B1%7D%7B2%7D%28-3%29%28k%29%5Cimplies%20%5Cboxed%7By%3D-%5Ccfrac%7B3k%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20a%20triangle%7D%7D%7BA%3D%5Ccfrac%7B1%7D%7B2%7Dbh%7D~~%20%5Cbegin%7Bcases%7D%20b%3D3%2Bk%5C%5C%20h%3Dy%5C%5C%20%5Cquad%20-%5Cfrac%7B3k%7D%7B2%7D%5C%5C%20A%3D1.5%5C%5C%20%5Cqquad%20%5Cfrac%7B3%7D%7B2%7D%20%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B3%7D%7B2%7D%3D%5Ccfrac%7B1%7D%7B2%7D%283%2Bk%29%5Cleft%28-%5Ccfrac%7B3k%7D%7B2%7D%20%5Cright%29)

now, we can plug those values on A = (1/2)bh,
![\bf \stackrel{\textit{using k = -2}}{A=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)}\implies A=\cfrac{1}{2}(3-2)\left(-\cfrac{3(-2)}{2} \right)\implies A=\cfrac{1}{2}(1)(3) \\\\\\ A=\cfrac{3}{2}\implies A=1.5 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{using k = -1}}{A=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)}\implies A=\cfrac{1}{2}(3-1)\left(-\cfrac{3(-1)}{2} \right) \\\\\\ A=\cfrac{1}{2}(2)\left( \cfrac{3}{2} \right)\implies A=\cfrac{3}{2}\implies A=1.5](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Busing%20k%20%3D%20-2%7D%7D%7BA%3D%5Ccfrac%7B1%7D%7B2%7D%283%2Bk%29%5Cleft%28-%5Ccfrac%7B3k%7D%7B2%7D%20%5Cright%29%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283-2%29%5Cleft%28-%5Ccfrac%7B3%28-2%29%7D%7B2%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%281%29%283%29%20%5C%5C%5C%5C%5C%5C%20A%3D%5Ccfrac%7B3%7D%7B2%7D%5Cimplies%20A%3D1.5%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20k%20%3D%20-1%7D%7D%7BA%3D%5Ccfrac%7B1%7D%7B2%7D%283%2Bk%29%5Cleft%28-%5Ccfrac%7B3k%7D%7B2%7D%20%5Cright%29%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283-1%29%5Cleft%28-%5Ccfrac%7B3%28-1%29%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7D%282%29%5Cleft%28%20%5Ccfrac%7B3%7D%7B2%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B3%7D%7B2%7D%5Cimplies%20A%3D1.5)
ANSWER : ABOUT 8 MINUTES
0.92 * 8 = 7.36
Answer:
15.726
Step-by-step explanation:
log 5=0.698×12.5
=8.737
=0.698×10
=6.989
=8.737+6.989
=15.726
I hope this helps
3x-y=13
step 1: add y to both sides
3x-y+Y=13+Y
3x=y+13
step 2: divide both sides by 3
3x/ 3 = y+13/3
x=1/3y+ 13/3
answer: x=1/3y+13/3