I think it’s C. , C. Should be right because the red jacket is absorbing the light
Hey there!
The number of vacancies per unit volume => ( Nv = 2.3*10²⁵ m⁻³ )
Avogrado's number => ( NA = 6.022*10²³ atoms/mol )
Density of material ( p ) in g/m³ :
1 g/cm³ = 1000000 g/m³ so:
7.40 * ( 1000000 ) = 7.40*10⁶ g/m³
Atomic mass = 85.5 g/mol
* Calculate the number of atomic sites per unit volume :
N = NA * p / A
N = ( 6.022*10²³ ) * ( 7.40*10⁶ ) / 85.5
N = 4.45*10³⁰ / 85.5
N = 5.212*10²⁸ atoms/m³
Therefore:
Calculate the fraction of vacancies :
Fv = Nv / N
Fv = 2.3*10²⁵ / 5.212*10²⁸
FV = 4.441*10⁻⁴
Hope that helps!
The reaction mixture of problem 1 includes <span>10mL of 4.0 M acetone = 10 mL 1.0 M HCl = 10 mL 0.0050 M I2 = 20 mL H2O. if this is true then the procedure is the following:
In order to find the total volume of reaction then you need to do like this:
</span><span>V = 10 mL + 10 mL + 10 mL + 20 mL = 50 mL </span>
<span>[I2]o = (0.005 mol I2 / 1 L I2 solution) (10 mL I2 solution) / 50 mL = 0.001 M </span>
<span>To first order, the reaction rate is 0.001 M / 230 s = 4,3 e-6 M/s
Then if you want to find the rate yoe need to use the following formula:
</span><span> k [CO(CH3)2]^a [I2]^b [HCl]^c
</span>So: <span>4,3 e-6 = k (4 M * 10 mL / 50 mL)^a (1e-3 M)^b (1 M * 10 mL / 50 mL)^c
</span>
Answer:
The solubility of the mineral compound X in the water sample is 0.0189 g/mL.
Explanation:
Step 1: Given data
The volume of water sample = 46.0 mL.
The weight of the mineral compound X after evaporation, drying, and washing = 0.87 g.
Step 2: Calculate the solubility of X in water
46.00 mL of water sample contains 0.87 g of the mineral compound X.
To calulate how many grams of the mineral compound 1.0 mL of water sample contains:
0.87 g/46.0 mL = 0.0189 g.
This means the solubility of the mineral compound X in the water sample is 0.0189 g/mL.