It's dependent on the mass. You can fimd the force needed using the formula F = ma. Where F is force, m is mass of the cart and a is the acceleration (0.9m/s^2). The heavier it is the more force you are going to need. Remember unit of force is N
Answer:
Explanation:
A wave is a phenomenon that travels through a material medium without any permanent effect on the medium. It can be classified as mechanical or electromagnetic waves. And the two major types are transverse and longitudinal.
From the given question;
1. Longitudinal waves e.g sound waves, waves in a spring'
2. Frequency (number of cycles per second).
3. Wavelength of the wave. Measured in meters.
4. Transverse waves e.g light waves, water waves.
5. Wave speed.
6. Electromagnetic waves e.g ultraviolet waves, X-rays etc.
7. Amplitude.
8. Hertz.
9. Rarefaction
10. Compression
Answer:
3% of the earth's water is fresh. 2.5% of the earth's fresh water is unavailable: locked up in glaciers, polar ice caps, atmosphere, and soil; highly polluted; or lies too far under the earth's surface to be extracted at an affordable cost. 0.5% of the earth's water is available fresh water.
To break the numbers down, 96.5% of all the Earth's water is contained within the oceans as salt water, while the remaining 3.5% is freshwater lakes and frozen water locked up in glaciers and the polar ice caps. Of that fresh water, almost all of it takes the form of ice: 69% of it, to be exact.
As these charts and the data table show, the amount of water locked up in ice and snow is only about 1.7 percent of all water on Earth, but the majority of total freshwater on Earth, about 68.7 percent, is held in ice caps and glaciers. Source: Gleick, P. H., 1996: Water resources.
The earth has an abundance of water, but unfortunately, only a small percentage (about 0.3 percent), is even usable by humans. The other 99.7 percent is in the oceans, soils, icecaps, and floating in the atmosphere. Still, much of the 0.3 percent that is useable is unattainable.
Explanation:
I hope this answer help you.
Speed is the sum of distance divided by time (speed = distance / time). So if you were to decrease the distance traveled over the same period of time, this will decrease the speed. If either distance or time is increased or decreased, the speed will do the same.
D I think is the correct answer
If the cylinder is slightly