1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kramer
3 years ago
12

Question 1.

Mathematics
2 answers:
stiks02 [169]3 years ago
6 0
<h2>Answer:</h2>

Question: 1)

The range is:

B. Greater for data set 2 [ 16 to 18 year olds]

The mean is:

B. Greater for data set 2 [ 16 to 18 year olds]

Question: 2)

The range is:

C. Greater for the 17 to 19 years old.

The median is:

C. Greater for the 17 to 19 years old.

<h2>Step-by-step explanation:</h2>

<u>Question 1)</u>

Minute spent online (13 to 15 years)

          21        1  

          24        1

          26        1  

          27         2  

          28         3  

          31           1  

          34          1

The minimum value=21

and maximum value= 34

Hence, Range=Maximum value-Minimum value

Range=34-21

Range=13

and mean  is:

Mean=\dfrac{21+24+26+27\times 2+28\times 3+31+34}{1+1+1+2+3+1+1}\\\\\\Mean=\dfrac{274}{10}\\\\\\Mean=27.4

and Minute spent online (16 to 18 years)

                 12       1  

                 21       1  

                 28      4  

                30.5    1  

                 34       1  

                 35       1    

                 36        1

The minimum value=12

and maximum value= 36

Hence, Range=Maximum value-Minimum value

Range=36-12

Range=24

and mean is calculated as follows:

Mean=\dfrac{12+21+28\times 4+30.5+34+35+36}{1+1+4+1+1+1+1}\\\\\\Mean=\dfrac{280.5}{10}\\\\\\Mean=28.05

Hence, we see that:

The range is greater for data set 16 to 18 years  ( since 24>13)

and the mean is also greater for data set 16 to 18 years ( since 28.05>27.4 )

<u>Question 2)</u>

    14 to 16 years:

              30             2  

              40              1    

              50              4  

              60               1    

               70              2    

               80              2

              100              3

               150             1

The minimum value=30

and maximum value= 150

Hence, Range=Maximum value-Minimum value

Range=150-30

Range=120

Also,we know that the median always exist in the middle of the data hence, when we arrange the data in the increasing order :

30   30    40   50   50   50   50   60   70   70   80   80   100   100   100    150

The median lie between 60 and 70

Hence, Median=(60+70)/2=65

Median=65

          17 to 19 years:

               50           1

               100          2  

               120          1

               140           1  

               150           1  

                160           1

                170            1

                180            1

              200             2  

               210              1  

               220             1

The minimum value=50

and maximum value= 220

Hence, Range=Maximum value-Minimum value

Range=220-50

Range=170

Also,we know that the median always exist in the middle of the data hence, when we arrange the data in the increasing order :

50   100   100   120   140   150   160   170   180   200   200   210    220

Hence, the number that comes in the middle is: 160

Hence, Median= 160

The range is same for both the second data( since 170>120) and the median is greater for  17 to 19 years.

KIM [24]3 years ago
4 0
<h3>✽ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ✽</h3>

➷ The range is B. Greater for data set 2

The mean is B. Greater for data set 2

2) The range is C. Greater for the 14 to 19 year olds

The median is C. Greater for the 14 to 19 year olds

<h3><u>✽</u></h3>

➶ Hope This Helps You!

➶ Good Luck (:

➶ Have A Great Day ^-^

↬ <u>ʜᴀɴɴᴀʜ</u> ♡

You might be interested in
Is this answer correct?
Aleks [24]
That’s correct!!!!!!
6 0
3 years ago
Use​ Gauss's approach to find the following sum​ (do not use​ formulas):5+11+17+23...+83
LUCKY_DIMON [66]

Denote the sum by <em>S</em>. So

<em>S</em> = 5 + 11 + 17 + 23 + ... + 83

There's a constant difference of 6 between consecutive terms in <em>S</em>, so the 3 terms before 83 are 77, 71, and 65. So

<em>S</em> = 5 + 11 + 17 + 23 + ... + 65 + 71 + 77 + 83

Gauss's approach involves inverting the sum:

<em>S</em> = 83 + 77 + 71 + 65 + ... + 23 + 17 + 11 + 5

If we add terms in the same position in the sums, we get

2<em>S</em> = (5 + 83) + (11 + 77) + ... + (77 + 11) + (83 + 5)

and we notice that each grouped term on the right gives a total of 88. So the right side consists of several copies <em>n</em> of 88, which means

2<em>S</em> = 88<em>n</em>

and dividing both sides by 2 gives

<em>S</em> = 44<em>n</em>

<em />

Now it's a matter of determining how many copies get added. The terms in the sum form an arithmetic progression that follows the pattern

11 = 5 + 6

17 = 5 + 2*6

23 = 5 + 3*6

and so on, up to

83 = 5 + 13*6

so <em>n</em> = 13, which means the sum is <em>S</em> = 44*13 = 572.

<em />

8 0
3 years ago
what is the equation of the line that passes through the point (-2,-2) and is parallel to the line 3x-y=2
VashaNatasha [74]

Answer:

y = 3x + 4

Step-by-step explanation:

Turn the equation from standard form to slope intercept form. So, solve for y.

3x - y = 2

~Subtract 3x to both sides

-y = 2 - 3x

~Divide -1 to everything

y = -2 + 3x

~Reorder

y = 3x - 2

The slope of a parallel line is the same as the original.

Find the new y-intercept.

y = 3x - 2

-2 = 3(-2) + b

-2 = -6 + b

4 = b

y = 3x + 4

Best of Luck!

7 0
3 years ago
URGANT!!! find the coordinates of where the line 2x+3y=12
bezimeni [28]
This has infinitely many solutions if that is all that the question asked...

2x+3y=12

3y=-2x+12

y=(-2x+12)/3  

So for any value of x you choose it will give you the corresponding y value that makes your original equation true.
4 0
4 years ago
Read 2 more answers
A table is 3 feet and 2 inches wide and a chair is 25 inches wide how much wider is the table then chair in inches
MariettaO [177]
To answer this problem, you would need to convert the values into inches.
12 inches = 1 ft

Table = 3ft 2 in = 38 inches wide
Chair = 25 inches wide

Then just subtract the two values to find how much wider the table is than the chair.

38-25=13 inches wider
4 0
4 years ago
Other questions:
  • What is the equation of the exponential graph shown?
    13·1 answer
  • Simplify <br> 8x^2-14x+3/4x-1<br><br><br> X≠1/4
    15·1 answer
  • Solve the given system of equations using either Gaussian or Gauss-Jordan elimination. (If there is no solution, enter NO SOLUTI
    9·1 answer
  • 4. Which of the following is the value of x?
    14·1 answer
  • Analyze the diagram below and complete the instructions that follow.
    7·1 answer
  • Nasim is ordering a taxi from an online taxi service. The taxi charges $3 just for the
    9·1 answer
  • Pls help me answer the question and if you don't know, pls don't answer. thank you!
    10·1 answer
  • HELP PLEASE. Hector built a tent shaped like a rectangular pyramid. The volume of the tent is 56 cubic ft. The area of the base
    12·1 answer
  • Steve weatherspoon, a super salesman contemplating retirement on his 50th birthday, decides to create a fund on an 11% basis tha
    12·1 answer
  • Quiz 1 1. A student scores 85, 90, 80, 90, and 100 on 5 quizzes. What
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!