Explanation:
Let us assume that the value of
= 
Also at 1500 K,
= 

Relation between
and
is as follows.

Putting the given values into the above formula as follows.



Also, 
or, 
= 
= 
Thus, we can conclude that the value of
is
.
Answer:
0.0125mol
Explanation:
Molarity (M) = number of moles (n) ÷ volume (V)
n = Molarity × Volume
According to this question, a 0.05M solution contains 250 mL of NaOH. The volume in litres is as follows:
1000mL = 1L
250mL = 250/1000
= 0.250L
n = 0.05 × 0.250
n = 0.0125
The number of moles of NaOH is 0.0125mol.
Answer:
OH−(aq), and H+(aq)
Explanation:
Redox reactions may occur in acidic or basic environments. Usually, if a reaction occurs in an acidic environment, hydrogen ions are shown as being part of the reaction system. For instance, in the reduction of the permanganate ion;
MnO4^-(aq) + 8H^+(aq) +5e-------> Mn^2+(aq) + 4H2O(l)
The appearance of hydrogen ion in the reaction equation implies that the process takes place under acidic reaction conditions.
For reactions that take place under basic conditions, the hydroxide ion is part of the reaction equation.
Hence hydrogen ion and hydroxide ion are included in redox reaction half equations depending on the conditions of the reaction whether acidic or basic.
Ionization Energy: DOWN a Group: Ionization energy DECREASES as you go DOWN a Group because the farther the valence electrons are from the nucleus (pulling power of the protons) the less energy it costs another atom to steal them
Oxidation number of fe in the compound...,
Let the oxidation number of (Fe) be x
The oxidation number of oxygen(o) is (-2)
; 3x + 4(-2) = 0...where zero is the total charge on the compound(fe3o4)
; 3x = 8...then divide both sides by 3
Oxidation number of fe is( 2.67 )