Mass of Magnesium nitrate produced : 593.2 g
<h3>Further explanation</h3>
The reaction equation is the chemical formula of reagents and product substances
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
Reaction
2HNO₃ + Mg(OH)₂ → Mg(NO₃)₂ + 2H₂0
mol HNO₃ = 8
From the equation, mol ratio of HNO₃ : Mg(NO₃)₂ = 2 : 1, so mol Mg(NO₃)₂ :

Mass Mg(NO₃)₂(MW=148,3 g/mol) :

1.2 L of hydrogen can be produced at a pressure of 2 atm and a temperature of 298 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Step 1: Write the balanced equation
Mg + 2 HCl ⇒ MgCl₂ + H₂
Step 2: Calculate the moles corresponding to 2.3 g of Mg
The molar mass of Mg is 24.31 g/mol.
2.3 g × 1 mol ÷24.31 g = 0.095 mol
Step 3: Calculate the moles of H₂ produced
0.095 mol Mg × 1 mol H₂ ÷ 1 mol Mg = 0.095 mol H₂
Step 4: Calculate the volume occupied by the hydrogen
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T÷P
V = 0.095 mol × (0.0821 atm.L/mol.K) × 298 K÷2 atm
V = 1.2 L
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Answer: 16 atm
Explanation:
P1V1 = P2V2
P2 = P1V1/V2
=4 atm x 8.00 L/2.00L = 16 atm
Answer:
CO2
Explanation:
- There are two types of molecules
- Polar
- Non polar
Non polar molecules are insoluble in water .
What i would say: The amount of gravitational potential energy an object has depends on its height and mass. The heavier the object and the higher it is above the ground, the more gravitational potential energy it holds. Gravitational potential energy increases as weight and height increases.
Hope this helps! :)