The solution to the problem is as follows:
let y = asinx + bcosx
<span>
dy/dx = acosx - bsinx </span>
<span>
= 0 for max/min </span>
<span>
bsinx = acosx </span>
<span>
sinx/cosx = a/b </span>
<span>
tanx = a/b </span>
<span>
then the hypotenuse of the corresponding right-angled triangle is √(a^2 + b^2) </span>
<span>the max/min of y occurs when tanx = a/b </span>
<span>
then sinx = a/√(a^2 + b^2) and cosx = b/√(a^2 + b^2) </span>
<span>
y = a( a/√(a^2 + b^2)) + b( b/√(a^2 + b^2)) </span>
<span>
= (a^2 + b^2)/√(a^2 + b^2) </span>
<span>
= √(a^2 + b^2)</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
No.
Step-by-step explanation:
Well we want to pull out the important values here to determine our expression which in this case is $2 and $.50. Since the fixed cost is 2 and there is .50 per kilometer. We can say that .50(m)+2 is our expression. Hope this helps! I apologize if you were looking for something else in advance.
(3 ÷ 5) ÷ 9 there you go.
Answer:
π·6^2
Step-by-step explanation: