Answer:
0.2081 = 20.81% probability that at least one particle arrives in a particular one second period.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
Over a long period of time, an average of 14 particles per minute occurs. Assume the arrival of particles at the counter follows a Poisson distribution. Find the probability that at least one particle arrives in a particular one second period.
Each minute has 60 seconds, so 
Either no particle arrives, or at least one does. The sum of the probabilities of these events is decimal 1. So

We want
. So
In which


0.2081 = 20.81% probability that at least one particle arrives in a particular one second period.
You will earn $20 washing 4 cars
Answer:
yes
Step-by-step explanation:
pic above

At this point in time, you can use a technique called cross-mutiplication, where you say that

, and

at this point in time, you can devide each side by 8 and solve
Answer:
Step-by-step explanation:
Please find the attached excel file.