32g of oxygen is required to burn 4g of hydrogen.
Define molecular mass.
A specific molecule's mass is expressed in daltons and is known as the molecular mass (m) (Da or u). Due to the varying isotopes of an element that they contain, multiple molecules of the same substance can have distinct molecular weights.
The total atomic mass of every atom in a molecule, calculated using a scale with hydrogen, carbon, nitrogen, and oxygen having atomic masses of 1, 12, 14, and 16, respectively. For instance, water has a molecular mass of 18 (2 + 16), which consists of two hydrogen atoms and one oxygen atom. known also as molecular weight.
In ,2H2+O2-----> 2H2O
H 2 molecules have a mass of 2 g/mol.
The molecular weight of oxygen is 32 g/mol.
When the chemical equation is balanced,
To totally react, 32 g of oxygen are needed for every 22=4 g of hydrogen.
To know more about molecular mass use link below:
brainly.com/question/21334167
#SPJ1
H₂O would be the limiting reactant.
Balanced chemical equation:
6CO₂ + 6H₂O + light equation → C₆H₁₂O₆ + 6O₂
The amount of product that can be created is constrained by the reactant that is consumed first in a chemical reaction, commonly referred to as the limiting reactant (or limiting reagent).
Given
No. of moles of CO₂ = 18.6
Mass of H₂O = 2.38 × 10² g = 238g
No. of moles of H₂O = Given mass/ Molar mass
= 238 / 18 = 13.22 moles
Moles of H₂O = 13.22
According to the balanced chemical equation
6 moles of CO₂ react with 6 moles of H₂O
So the reactant that has less number of moles will be consumed first.
As the No. of moles of H₂O < No. of moles of CO₂
So, H₂O is the limiting reactant with 13.22 moles.
Hence, H₂O would be the limiting reactant.
Learn more about limiting reactant here brainly.com/question/14222359
#SPJ1
Answer:
= 74.4 grams / mole. Ernest Z. The reaction will produce 15.3 g of KCl
Explanation:
Answer:
The water molecules slow down, stronger attractions form between them, and the molecules are pulled closer together.
Explanation:
In solids the packing of the particles is closer and tighter thus increasing the intermolecular attraction. This makes solids rigid with a definite shape, size and volume. On the other hand in liquids the packing of the particles is loose thus decreasing the intermolecular attraction. This makes liquids able to flow, and takes the shape and volume of the container in which they are placed.
C is the answer hope this helps