Answer:
The areas are equal.
Step-by-step explanation:
Let the first rectangle be R and
the second rectangle be R'.
Sine R and R' are identical, their lengths are equal and their breadths are equal.
So, if Inga divided each into equal parts, then each part of both rectangles are equal.
Hence, the colored parts of both rectangles are equal.
By the graph of a straight line through the origin with a slope equal to the unit rate
The probability that exactly 4 of the selected adults believe in reincarnation is 5.184%, and the probability that all of the selected adults believe in reincarnation is 7.776%.
Given that based on a poll, 60% of adults believe in reincarnation, to determine, assuming that 5 adults are randomly selected, what is the probability that exactly 4 of the selected adults believe in reincarnation, and what is the probability that all of the selected adults believe in reincarnation, the following calculations must be performed:
- 0.6 x 0.6 x 0.6 x 0.6 x 0.4 = X
- 0.36 x 0.36 x 0.4 = X
- 0.1296 x 0.4 = X
- 0.05184 = X
- 0.05184 x 100 = 5.184
- 0.6 x 0.6 x 0.6 x 0.6 x 0.6 = X
- 0.36 x 0.36 x 0.6 = X
- 0.1296 x 0.6 = X
- 0.07776 = X
- 0.07776 x 100 = 7.776
Therefore, the probability that exactly 4 of the selected adults believe in reincarnation is 5.184%, and the probability that all of the selected adults believe in reincarnation is 7.776%.
Learn more in brainly.com/question/795909
Answer: 100,000.
Explanation: im sorry but thats way too many zeroes for me to write if you want the standard method lol