The new parking lot must hold twice as many cars as the previous parking lot. The previous parking lot could hold 56 cars. So this means the new parking lot must hold 2 x 56 = 112 cars
Let y represent the number of cars in each row, and x be the number of total rows in the parking lot. Since the number of cars in each row must be 6 less than the number of rows, we can write the equation as:
y = x - 6 (1)
The product of cars in each row and the number of rows will give the total number of cars. So we can write the equation as:
xy = 112 (2)
Using the above two equations, the civil engineer can find the number of rows he should include in the new parking lot.
Using the value of y from equation 1 to 2, we get:
x(x - 6) = 112 (3)
This equation is only in terms of x, i.e. the number of rows and can be directly solved to find the number of rows that must in new parking lot.
Answer:
i cant see it
Step-by-step explanation:
Answer:

See explanation below.
Step-by-step explanation:
For this case we define first some notation:
A= A new training program will increase customer satisfaction ratings
B= The training program can be kept within the original budget allocation
And for these two events we have defined the following probabilities

We are assuming that the two events are independent so then we have the following propert:

And we want to find the probability that the cost of the training program is not kept within budget or the training program will not increase the customer ratings so then if we use symbols we want to find:

And using the De Morgan laws we know that:

So then we can write the probability like this:

And using the complement rule we can do this:

Since A and B are independent we have:

And then our final answer would be:
