Answer:
Explanation:
This problem is based on conservation of angular momentum.
moment of inertia of larger disc I₁ = 1/2 m r² , m is mass and r is radius of disc . I
I₁ = .5 x 20 x 5²
= 250 kgm²
moment of inertia of smaller disc I₂ = 1/2 m r² , m is mass and r is radius of disc . I
I₂ = .5 x 10 x 2.5²
= 31.25 kgm²
3500 rmp = 3500 / 60 rps
n = 58.33 rps
angular velocity of smaller disc ω₂ = 2πn
= 2π x 58.33
= 366.3124 rad /s
applying conservation of angular momentum
I₂ω₂ = ( I₁ +I₂) ω , ω is the common angular velocity
31.25 x 366.3124 = ( 250 +31.25) ω
ω = 40.7 rad / s .
Answer: A. force with which air rushes across the vocal folds
Explanation:
The human voice is produced in the larynx, whose essential part is the glottis. This is how the air coming from the lungs is forced during expiration through the glottis, making its two pairs of vocal folds to vibrate.
It should be noted that this process can be consciously controlled by the person who speaks (or sings), since the variation in the intensity of the sound of the voice depends on the strength of the breath.
Water goes through evaporation.
Answer:
Good one
Explanation:
Hydrogen has the highest thermal conductivity of any gas.