Answer:
Gravitational force
Explanation:
If two spheres have equal densities and they are subject only to their mutual gravitational attraction. We need to say that the quantities that must have the same magnitude for both spheres. So, the correct option is (E) i.e. gravitational force.
It is because of Newton's third law of motion. It states that the force due to object 1 to object 2 is same as force due to object 2 to object 1. The two forces act in opposite direction.
Hence, the correct option is (E) "Gravitational force".
Answer:
The work done on the system can be accounted for by;
Both
and 
Explanation:
The speed of the crate = Constant
Therefore, the acceleration of the crate = 0 m/s²
The net force applied to the crate,
= 0
Therefore, the force of with which the crate is pulled = The force resisting the upward motion of the crate
However, we have;
The force resisting the upward motion of the crate = The weight of the crate + The frictional resistance of the ramp due to the surface contact between the ramp and the crate
The work done on the system = The energy to balance the resisting force = The weight of the crate × The height the crate is raised + The heat generated as internal energy to the system
The weight of the crate × The height the crate is raised = Gravitational Potential Energy = 
The heat generated as internal energy to the system = 
Therefore;
The work done on the system =
+
.
From the Newton’s First Law, we can see that acceleration
is simply the ratio of Force over mass. In this case, mass is the sum of the
mass of each car, that is:
mass = 2300 kg + 2500 kg = 4800 kg
So the formula is:
acceleration = Force / mass
acceleration = 18,000 N / 4800 kg
acceleration = 3.75 m/s^2
In 2 significant figures:
<span>acceleration = 3.8 m/s^2</span>
Answer:
The correct answer is the sea
Answer:
12.24 m/s
Explanation:
Speed: This can be defined as the rate of change of distance with time. The S.I unit of speed is m/s.
Using the formula,
a = v/t................ Equation 1
Where a = acceleration of the sprinter, v = speed of the sprinter, t = time.
making v the subject of the equation,
v = at ................. Equation 2
Given: a = 5.1 m/s², t = 2.4 s.
Substitute into equation 2
v = 5.1(2.4)
v = 12.24 m/s.
Hence, the speed of the sprinter = 12.24 m/s