Let <em>w</em>, <em>n</em>, <em>p</em>, and <em>f</em> denote the magnitudes of the 4 forces acting on the box.
• <em>w</em> = <u>w</u>eight = 319 N
• <em>n</em> = <u>n</u>ormal force
• <em>p</em> = <u>p</u>ushing force = 485 N
• <em>f</em> = <u>f</u>riction = <em>µ</em> <em>n</em>, where <em>µ</em> is the coefficient of static friction
The net force on the box points in the direction that the box moves, which is to the right. In particular, this means the box is vertically in equilibrium. Split up the vectors into their vertical and horizontal components, and apply Newton's second law. (I take up and right to be the positive vertical and horizontal directions, respectively.)
• vertical:
<em>p</em> sin(-35°) + <em>n</em> - <em>w</em> = 0
and solving for <em>n</em>,
- (485 N) sin(35°) + <em>n</em> - 319 N = 0
<em>n</em> ≈ 597 N
• horizontal:
<em>p</em> cos(-35°) - <em>f</em> = <em>m</em> <em>a</em>
where <em>a</em> is the magnitude of the net acceleration on the box. Solve for <em>a</em>. Since <em>f</em> = <em>µ</em> <em>n</em> and <em>m</em> = <em>w</em> / <em>g</em> (where <em>g</em> = 9.80 m/s² is the mag. of the acc. due to gravity) we get
<em>p</em> cos(35°) - <em>µ</em> <em>n</em> = (<em>w</em> / <em>g</em>) <em>a</em>
(485 N) cos(35°) - <em>µ</em> (597 N) = (319 N) / (9.80 m/s²) <em>a</em>
<em>a</em> ≈ (12.2 - 18.3 <em>µ</em>) m/s²
(a) If <em>µ</em> = 0.57, then the net acceleration on the box is
<em>a</em> ≈ (12.2 - 18.3 • 0.57) m/s² ≈ 1.75 m/s²
so that the time <em>t</em> required to move the box 4 m is
4 m = 1/2 <em>a</em> <em>t </em>²
<em>t</em> ≈ √((8 m) / (1.75 m/s²))
<em>t</em> ≈ 2.14 s
(b) The box does not move.
If <em>µ</em> = 0.75, then
<em>a</em> = (12.2 - 18.3 • 0.75) m/s² ≈ -1.55 m/s²
but a negative acc. here means the applied acc. points *opposite* the direction of movement, thus making the box move backward which doesn't make sense. The coefficient of friction is too large for the given applied force to get the box moving. With <em>µ</em> = 0.75, the frictional force to overcome has mag. <em>f</em> ≈ 448 N. But the given push contributes a horizontal force of (485 N) cos(-35°) ≈ 397 N. This mag. needs to be increased in order to get the box moving.