1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
malfutka [58]
3 years ago
6

The greater the mass is in an object, the higher resistance to a change in movement the object will have. Please select the best

answer from the choices provided
a. True
b. False
Physics
1 answer:
Fofino [41]3 years ago
3 0
This statement is true. The greater the mass is in an object, it is indeed the higher resistance to a change in movement the object will have. That only mean that the mass of an object and its resistance to change of movement is directly proportional.
You might be interested in
A flight into space by a spacecraft where the spacecraft returns to Earth without achieving orbit is called a
Gwar [14]

b. par orbital flight

may be .

4 0
2 years ago
Given the following lens combination:
natulia [17]

Given:

Lens.........diameter ...fl#

eyepiece...2cm............5

objective...40cm........15

focal length of eyepiece = 2*5 = 10cm

focal length of objective = 40*15 = 600cm

magnification = FL obj / FL eyp = 600/10 = 60x


7 0
3 years ago
Read 2 more answers
What is another way of saying “getting the smallest possible force”?
Dmitriy789 [7]

Answer:

MOMENTUM

Explanation:

another way of saying getting the smallest force possible is the word " MOMENTUM".

momentum is the ability to keep maintaining,incresing or itself developing to move at constant speed or to increase the speed.

7 0
3 years ago
STATE THE HOOKE'S LAW
victus00 [196]
The Hooke's law is a principal of physics that states that the force needed to extend or compress a spring by some distance x scales linearly with respect to that distance.
6 0
3 years ago
Read 2 more answers
Suppose you want to determine the resistance of a resistor that is nominally 100 . You should be able to apply 10 V across the r
Butoxors [25]

Answer:

a) For y = 102 mA, R = 98.039 ohms

For y = 97 mA, R = 103.09 ohms

b) Check explanatios for b

Explanation:

Applied voltage, V = 10 V

For the first measurement, current y_{1} = 102 mA = 0.102 A

According to ohm's law, V = IR

R = V/I

Here, I = y_{1}

R = \frac{V}{y_{1} } \\R = \frac{10}{0.102} \\R = 98.039 ohms

For the second measurement, current y_{2} = 97 mA = 0.097 A

R = \frac{V}{y_{2} }

R = \frac{10}{0.097} \\R = 103 .09 ohms

b) y = \left[\begin{array}{ccc}y_{1} &y_{2} \end{array}\right] ^{T}

y = \left[\begin{array}{ccc}y_{1} \\y_{2} \end{array}\right]

y = \left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3}  \end{array}\right]

A linear equation is of the form y = Gx

The nominal value of the resistance = 100 ohms

x = \left[\begin{array}{ccc}100\end{array}\right]

\left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3}  \end{array}\right] =  \left[\begin{array}{ccc}G_{1} \\G_{2}  \end{array}\right] \left[\begin{array}{ccc}100\end{array}\right]\\\left[\begin{array}{ccc}G_{1} \\G_{2}  \end{array}\right] =  \left[\begin{array}{ccc}102*10^{-5} \\97*10^{-5}  \end{array}\right]

3 0
3 years ago
Other questions:
  • Psychologists working from the humanistic perspective help people do all of the following except
    7·1 answer
  • Scientific word of volume
    14·2 answers
  • Which of the following is not needed to make a model of the water cycle?
    8·1 answer
  • If you lived in Syracuse, you may have experienced _____.
    10·1 answer
  • An object of mass 0.50 kg is transported to the surface of Planet X where the object's weight is measured to be 20 N. The radius
    14·1 answer
  • When choosing a protein it is best to choose one for high in saturated fats true or false​
    14·1 answer
  • What is the best explanation for seasons?
    7·2 answers
  • Can some one tell the answers
    13·1 answer
  • Explain the procedures used and data recorded to identify a crystalline mineral based on its properties.
    5·2 answers
  • An object weighing 2.7n while in air and 1.2n when completely immersed in water.find the relative density of the object
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!