Answer:
(1-cos2A) /(1+cos2A) =tan²A
Proof:
We know that,
cos(A+B) =cosA.cosB-sinA.sinB
=>cos2A=cos(A+A)
=>cos2A=cosA.cosA - sinA.sinA
=>cos2A=cos²A-sin²A
=>cos2A=(cos²A-sin²A)/(cos²A+sin²A
Since {cos²A+sin²A=1}
Divide the numerator & the denominator by (cos²A) to get,
cos2A = {(cos²A-sin²A) ÷cos²A} / {(cos²A+sin²A) ÷cos²A}
cos2A ={(1-tan²A)/(1+tan²A)}
Then,
1-cos2A = 1-[{(1–tan²A)/(1+tan²A)}]
1-cos2A =(1+tan²A-1+tan²A)/(1+tan²A)
1-cos2A=(2tan²A)/(1+tan²A)
And now.......
1+cos2A=1+[{(1-tan²A)/(1+tan²A)}]
1+cos2A={1+tan²A+1-tan²A}/{1+tan²A}
1+cos2A=2/(1+tan²A)
So now,
(1-cos2A)/(1+cos2A)= {2tan²A/(1+tan²A)}÷{2/(1+tan²A)}
={(2tan²A)(1+tan²A)}÷{2(1+tan²A)}
=tan²A
Step-by-step explanation:
make me as brain liest
x - 2y + z = 5 | *2
⇒ 2x - 4y+ 2z=10
3x + 3y - 2z = - 6 } I sum up these relations
--------------------------------
2x+3x - 4y+3y+2z-2z=10-6
5x - y = 4 (1)
3x + 3y - 2z = - 6 | *3 ⇒ 9x + 9y - 6z = - 18
2x - y + 3z = 11 | *2 ⇒ 4x - 2y + 6z= 22 I sum up these
----------------------------------
⇒ 9x+4x+9y-2y-6z+6z= 4
13x+ 7y= 4 (2)
I write (1) and (2)
5x - y = 4 | *7
35x - 7y= 28
13x+7y=4
48x = 32
x= 32/48=4/6 ( 32:8=4, 48:8=6)
x= 2/3
5x-y=4,
5*2/3-y=4
y=10/3 -4=10/3-12/3=-2/3
⇒ y= - 2/3
x - 2y + z = 5
2/3 - 2*(-2/3)+z=5
2/3+4/3+z=5
6/3+z=5
2+z=5
z=3
x+y+z=2/3-2/3+3=3
x+y+z=3
Answer:
The jumbo pack is a better deal
Step-by-step explanation:
The better deal of two is the one that offers a lower cost per ride. Considering the two deals, the cost per unit ride for;
a jumbo pack of 50 ride tickets for $45 = $45/50
= $0.90 per ride
a medium pack of 30 ride tickets for $28.50
= $28.50/30
= $0.95
From the computations above, the medium pack (at $0.95) is more costly than the jumbo pack (at $0.90). Hence the jumbo pack is a better deal for Franco.
Answer:
315000 (D)
Step-by-step explanation:
100%-> 350000
90%->315000