Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.
This is mathematically represented as
<u>F= (G X m1 x m2) /r∧2</u>
where F is the force acting between the charged particles
r is the distance between the two charges measured in m
G is the gravitational constant which has a value of <em>6.674×10^-11 Nm^2 kg^-2</em>
m1 and m2 are the masses of the objects measured in Kg
Now if the distance between the is doubled then r becomes 2r. Substituting this in the above formula we get the new Force as
Force (new) = (G X m1 x m2) /(2r)∧2
Thus dividing Force(new)/Force we get
Force(new)/Force = 1/4.
Thus the gravitational force becomes 1/4th of the original value if the distance between the two masses are doubled.
Answer:
The applied torque is 3.84 N-m.
Explanation:
Given that,
Moment of inertia of the wheel is 
Initial speed of the wheel is 0 (at rest)
Final angular speed is 25 rad/s
Time, t = 13 s
The relation between moment of inertia and torque is given by :

So, the applied torque is 3.84 N-m.
Answer:
Electric flux in a) , b) and c) is same which is 0.373 × 10 ⁶ N m²/C
Explanation:
given,
surface charge (q) = 3.3 × 10⁻⁶ C
to calculate electric flux = ?
a) radius = 0.76 m
area of sphere = 4 π r²
electric flux = 

electric flux = 
flux = 0.373 × 10 ⁶ N m²/C
electric flux in the other two cases will also be same as electric flux is independent of area
so, Electric flux in a) , b) and c) is same which is 0.373 × 10 ⁶ N m²/C