i think it is the cell wall.
Answer:
d. 97.60 g
Explanation:
Given parameters:
Number of moles of formaldehyde = 3.25moles
Ratio:
C H O
1 2 1
Unknown:
Mass of this sample = ?
Solution:
The empirical formula of a compound is its simplest formula. It is the simplest whole number ratio of the atoms in a given substance.
The molecular formula is the actual formula of the compound.
Since the molecular and empirical formula are the same here, the formula of the compound is;
CH₂O
To find the mass of the formaldehyde, use the expression below;
Mass = number of moles x molar mass
molar mass of CH₂O = 12 + 2(1) + 16 = 30g/mol
Mass = 3.25 x 30 = 97.5g
Answer: 13 grams
Explanation:
The quantity of heat energy (Q) released from a heated substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = 202.8 Joules
Mass of silver = ?
C = 0.240 J/g °C.
Φ = 65°C
Then, Q = MCΦ
202.8J = M x 0.240 J/g °C x 65°C
202.8J = M x 15.6 J/g
M = (202.8J / 15.6 J/g)
M = 13 g
Thus, the mass of silver is 13 grams
Answer:
The concentration of fructose-6-phosphate F6P ≅ 1.35 mM
Explanation:
Given that:
ΔG°′ is the conversion of glucose-6-phosphate to fructose-6-phosphate (F6P) = +1.67 kJ/mol = 1670 J/mol
concentration of glucose-6-phosphate at equilibrium = 2.65 mM
Assuming temperature = 25.0°C
=( 25 + 273)K
= 298 K
We are to find the concentration of fructose-6-phosphate
Using the relation;
ΔG' = -RT In K_c
where;
R = 8.314 J/K/mol
1670 = - (8.314 × 298 ) In K_c
1670 = -2477.572 × In K_c
1670/ 2477.572 = In K_c
0.67 = In K_c

0.511
Now using the equilibrium constant 
![K_c = \dfrac{[F6P]}{[G6P]}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cdfrac%7B%5BF6P%5D%7D%7B%5BG6P%5D%7D)
![0.511 = \dfrac{[F6P]}{[2.65]}](https://tex.z-dn.net/?f=0.511%20%3D%20%20%5Cdfrac%7B%5BF6P%5D%7D%7B%5B2.65%5D%7D)
F6P = 0.511 × 2.65
F6P = 1.35415
F6P ≅ 1.35 mM