The domain of a function is the set of values of x for which a value of y exists. In this case, the only way that a value of y would not exist is for a denominator to equal to zero. If this function is f(x) = 1/(x+1) + 5, then we must find the values of x for which the denominator (x+1) = 0, which is at x = -1.
Therefore the domain is all real numbers except x = -1. In interval notation this can be written as (-infinity, -1), (-1, infinity).
Answer:
9 tables (see below)
Step-by-step explanation:
Let t represent the number of table sales required to meet revenue requirements. The total of sales for the day must be ...
7(200) +t(800) ≥ 8000
800t ≥ 6600 . . . . . . . . . . subtract 1400
t ≥ 8.25
If additional sales are limited to tables, the store must sell at least 9 tables. The revenue goal can also be met by selling 1 chair and 8 tables. (A chair brings in 0.25 times the revenue of a table.)
If the store sells 5 more chairs, it only needs to sell 7 tables. (This combination will result in 19 pieces being sold.)
Answer:
Surface area of the rectangular prism = 62 inch²
Step-by-step explanation:
Surface area of a rectangular prism =2(wl+hl+hw)
w = width = 3 inches
h = height= 2 inches
l = length = 5 inches
A = 2(3x5 + 2x5 + 3x2) = 62 inch²
<span>The sum of two numbers is 50. The smaller number is 18 less than the larger number. What are the numbers?
-----
Equations:
x + y = 50
x = y - 18
-------------------
Add and solve for "x"::
2x = 32
x = 16
-----
Solve for "y"::
16 + y = 50
y = 34
-----------------
Hope I helped!
~Tomas</span>
Answer:
itself was just<em><u> </u></em><em><u>an</u></em><em><u> </u></em><em><u>awesome</u></em><em><u> </u></em><em><u>game</u></em><em><u> </u></em><em><u>that</u></em><em><u> </u></em><em><u>had</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>game</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>one</u></em><em><u> </u></em><em><u>game</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>my</u></em><em><u> </u></em><em><u>friends</u></em><em><u>.</u></em>