Since the vertex is at (-3, 6), the equation is given by
y = a(x + 3) + 6
Therefore, option A is the correct answer.
Step-by-step explanation:
112+68+112+x = 360⁰
292⁰+x = 360⁰
x = 360⁰- 292⁰
x= 68⁰
Answer:
13
Step-by-step explanation:
-12 - - 25 =
- 12 + 25 =
13
Answer:
0.0032
The complete question as seen in other website:
There are 111 students in a nutrition class. The instructor must choose two students at random Students in a Nutrition Class Nutrition majors Academic Year Freshmen non-Nutrition majors 17 18 Sophomores Juniors 13 Seniors 18 Copy Data. What is the probability that a senior Nutrition major and then a junior Nutrition major are chosen at random? Express your answer as a fraction or a decimal number rounded to four decimal places.
Step-by-step explanation:
Total number of in a nutrition class = 111 students
To determine the probability that the two students chosen at random is a junior non-Nutrition major and then a sophomore Nutrition major, we would find the probability of each of them.
Let the probability of choosing a junior non-Nutrition major = Pr (j non-N)
Pr (j non-N) = (number of junior non-Nutrition major)/(total number students in nutrition class)
There are 13 number of junior non-Nutrition major
Pr (j non-N) = 13/111
Let the probability of choosing a sophomore Nutrition major = Pr (S N-major)
Pr (S N-major)= (number of sophomore Nutrition major)/(total number students in nutrition class)
There are 3 number of sophomore Nutrition major
Pr (S N-major) = 3/111
The probability that the two students chosen at random is a junior non-Nutrition major and then a sophomore Nutrition major = 13/111 × 3/111
= 39/12321
= 0.0032