Answer: Empirical formula is 
Explanation: We are given the masses of elements present in a sample of compound. To evaluate empirical formula, we will be following some steps.
<u>Step 1 :</u> Converting each of the given masses into their moles by dividing them by Molar masses.

Molar mass of Carbon = 12.0 g/mol
Molar mass of Hydrogen = 1.0 g/mol
Molar mass of Oxygen = 16.0 g/mol
Moles of Carbon = 
Moles of Hydrogen = 
Moles of Oxygen = 
<u>Step 2: </u>Dividing each mole value by the smallest number of moles calculated above and rounding it off to the nearest whole number value
Smallest number of moles = 13.76 moles



<u>Step 3:</u> Now, the moles ratio of the elements are represented by the subscripts in the empirical formula
Empirical formula becomes = 
Molarity is expressed as the number of moles of solute per volume of the solution. For example, we are given a solution of 2M NaOH this describes a solution that has 2 moles of NaOH per 1 L volume of the solution. Acids and bases can be measured through the concentrations of H+ and OH- ions in units of molarity. Hope this helps.
Well as far as I know to make one ton of sulfuric acid takes 1,000,000 grams, so the answer should be 98,000,000 grams
Pb(NO₃)₂ ⇒limiting reactant
moles PbI₂ = 1.36 x 10⁻³
% yield = 87.72%
<h3>Further explanation</h3>
Given
Reaction(unbalanced)
Pb(NO₃)₂(s) + NaI(aq) → PbI₂(s) + NaNO₃(aq)
Required
- moles of PbI₂
- Limiting reactant
- % yield
Solution
Balanced equation :
Pb(NO₃)₂(s) + 2NaI(aq) → PbI₂(s) + 2NaNO₃(aq)
mol Pb(NO₃)₂ :
= 0.45 : 331 g/mol
= 1.36 x 10⁻³
mol NaI :
= 250 ml x 0.25 M
= 0.0625
Limiting reactant (mol : coefficient)
Pb(NO₃)₂ : 1.36 x 10⁻³ : 1 = 1.36 x 10⁻³
NaI : 0.0625 : 2 = 0.03125
Pb(NO₃)₂ ⇒limiting reactant(smaller ratio)
moles PbI₂ = moles Pb(NO₃)₂ = 1.36 x 10⁻³(mol ratio 1 : 1)
Mass of PbI₂ :
= mol x MW
= 1.36 x 10⁻³ x 461,01 g/mol
= 0.627 g
% yield = 0.55/0.627 x 100% = 87.72%