Answer:
1.274 moles
Explanation:
The equation for the reaction can be represented as follows:
⇄
+ 
K = 0.060
K = ![\frac{[PCl_3][Cl_2]}{[PCl_5]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5BPCl_5%5D%7D)
Concentration of
= 
Concentration of
= 
Concentration of
= 0.398 moles
If we construct an ICE table for the above equation; we have:
⇄
+ 
Initial 0.398 0 0
Change - x + x + x
Equilibrium (0.398 - x) x x
K = ![\frac{[PCl_3][Cl_2]}{[PCl_5]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5BPCl_5%5D%7D)
K = ![\frac{[x][x]}{[0.398-x]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bx%5D%5Bx%5D%7D%7B%5B0.398-x%5D%7D)
K = 
0.060 = 
0.06(0.398-x) = x²
0.02388 - 0.060x = x²
x² + 0.060x - 0.02388 = 0 (quadratic equation)
a = 1; b= 0.06; c= -0.02388
Using quadratic formula;
= 
= 
= 
= 
= 
=
or 
=
or 
= 0.1274 or -0.1874
We go by the positive value which says:
[x] = 0.1274 M
number of moles = 0.1274 × 10.0
= 1.274 moles
∴ the number of moles of Cl₂ produced at equilibrium = 1.274 moles
This is possible because of the emulsifying properties present in soap. This property is caused by the hydrophilic end and hydrophobic end of a soap molecule. Grease is able to be dissolved in the water because it is attracted to the hydrophobic end of the soap molecule.
it would be B because warm humid air+cool land=fog
<h3>
Answer:</h3>
0.424 J/g °C
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Chemistry</u>
<u>Thermochemistry</u>
Specific Heat Formula: q = mcΔT
- q is heat (in Joules)
- m is mass (in grams)
- c is specific heat (in J/g °C)
- ΔT is change in temperature
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] m = 38.8 g
[Given] q = 181 J
[Given] ΔT = 36.0 °C - 25.0 °C = 11.0 °C
[Solve] c
<u>Step 2: Solve for Specific Heat</u>
- Substitute in variables [Specific Heat Formula]: 181 J = (38.8 g)c(11.0 °C)
- Multiply: 181 J = (426.8 g °C)c
- [Division Property of Equality] Isolate <em>c</em>: 0.424086 J/g °C = c
- Rewrite: c = 0.424086 J/g °C
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.424086 J/g °C ≈ 0.424 J/g °C