You want to isolate the x-term from the constant term, so you can subtract x/3 and add 10. This gives you
... 4/9x -10 -x/3 +10 > x/3 -12 -x/3 +10
... 1/9x > -2 . . . . . . collect terms
Now, you can multiply by 9 to see the condition on x.
... 9(1/9x) > -2(9)
... x > -18
On the x-y plane, the graph of this will be a dashed line at x=-18, and the half-plane to the right of that line will be shaded.
On a number line, there will be an open circle at x=-18, and the number line to the right of that circle will be marked (bold, colored, shaded, whatever).
Answer: 4/5 - 4/7 = 8/35
Step-by-step explanation:
The vertex form of a quadratic function is:
f(x) = a(x - h)² + k
The coordinate (h, k) represents a parabola's vertex.
In order to convert a quadratic function in standard form to the vertex form, we can complete the square.
y = 2x² - 5x + 13
Move the constant, 13, to the other side of the equation by subtracting it from both sides of the equation.
y - 13 = 2x² - 5x
Factor out 2 on the right side of the equation.
y - 13 = 2(x² - 2.5x)
Add (b/2)² to both sides of the equation, but remember that since we factored 2 out on the right side of the equation we have to multiply (b/2)² by 2 again on the left side.
y - 13 + 2(2.5/2)² = 2(x² - 2.5x + (2.5/2)²)
y - 13 + 3.125 = 2(x² - 2.5x + 1.5625)
Add the constants on the left and factor the expression on the right to a perfect square.
y - 9.875 = 2(x - 1.25)²
Now, we need y to be by itself again so add 9.875 back to both sides of the equation to move it back to the right side.
y = 2(x - 1.25)² + 9.875
Vertex: (1.25, 9.875)
Solution: y = 2(x - 1.25)² + 9.875
Or if you prefer fractions
y = 2(x - 5/4)² + 79/8
Step-by-step explanation:
<em><u>40</u></em><u>, </u><em><u>58,</u></em><u> </u><u>58</u><u>, </u><em><u>72,</u></em><u> </u><em><u>74</u></em>, 74, 7<u>6, 81, 83, 84, </u><u>92</u>
1 2 3 4 5 6 5 4 3 2 1
1) A. 74
2) B. 40
3) A. 92
4) A. 58
Brainlist pls!