Answer:
A=50mΩ
B≅50mΩ
Explanation:
A) To answer this question we have to use the Current Divider Rule. that rule says:
(1)
Itotal represents the new maximun current, 50mA, Ix is the current going through the 100 ohms resistor, and Req. is the equivalent resitor.
We now have a set of two resistor in parallel, so:
(2)
where R1 is the resitor we have to calculate, and R2 is the 100 ohms resistor (25 uA).
substituting and rearranging (2)
(3)
Now substituting (3) in (1).

solving this, The value of R1 is: 50mΩ
This value of R1 will guaranty that the ammeter full reflection willl be at 50mA.
Given that R2 (100ohm) it too much bigger than 50mΩ, the equivalent resistor will tend to 50mΩ
If you substitude this values on (2) Req. will be 49.97 mΩ.
Answer:
The amplitude of the eardrum's oscillation is 6.65×10^-13 m.
Explanation:
Given data:
The sound has a frequency of 262 Hz
The sound level is 84 dB
The air density is 1.21 kg/m^3
The speed of sound is 346 m/s
Solution:
As, Intensity of sound is given by,
I = Io×10^(s/10 db)
I = 2×π^2×ρ×v×f^2×Sm^2
Thus,
Sm = √(Io×10^(s/10 db)) / √( 2×π^2×ρ×v×f^2)
Now, put the values,
Sm = √( 10^-12 × 10^(84/10) ) / √( 2×(3.14)^2×1.21×346×(262)^2 )
Sm = √(2.51×10^-4 / 5.66×10^8)
Sm = √0.443×10^-12
Sm = 6.65×10^-13 m.
Answer:
Removing some of the books reduced the mass of the box, and less force was needed to push it across the floor.
The mass of the man would remain the same…
His weight would change. Assuming the man’s weight on earth is 60N.
Since weight is a force, according to Newton’s second law, F = ma ( m = mass, a = acceleration due to gravity) First lets find the mass of the man, as it is required to find his weight on the moon.
F=ma[taking a of earth as10m/s
2
]
60=m.10[divide10onbothsides]
m=
10
60
= 6 Kg
Acceleration due to gravity on the moon is83%less than the acceleration due to gravity on earth(1.622m/s
2
).
F=ma
F=6.1.622=9.732 N
So a person weighting 60N on earth would approximately weight around 10Non the moon.