1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
3 years ago
9

Mark throws a ball upward.

Physics
1 answer:
Murrr4er [49]3 years ago
3 0

Answer:

the acceleration of the ball

Explanation:when a ball is thrown upward the acceleration remains constant

You might be interested in
Two stones, one with twice the mass of the other, are thrown straight up and rise to the same height h. Compare their changes in
Lady bird [3.3K]
<h2>The gravitational potential energy is double for stone with twice the mass of other stone.</h2>

Explanation:

Let mass of stone 1 be m.

Mass of stone 2 is twice the mass of stone 1.

Mass of stone 2 = 2m

We know that

  Gravitational potential energy = Mass x acceleration due to gravity x Height

  PE = mgh

For stone 1 ,

                PE₁ = mgh

For stone 2 ,

                PE₂ = 2mgh = 2 PE₁

So the gravitational potential energy is double for stone with twice the mass of other stone.

               

4 0
3 years ago
Read 2 more answers
In the late 19th century, great interest was directed toward the study of electrical discharges in gases and the nature of so-ca
gizmo_the_mogwai [7]

Answer:

A) He finds the same value of q / m for different materials , B)      y = ½ (q / m) E L² / v₀ₓ² , C) v = E / B , D)   B = 2.13 10⁻⁶ T, E) For the first part I have two off-center points., For the second part I can center one point but the other is off center

Therefore the third statement is correct

Explanation:

Part A

Thomson's experiments are the first proof that the atoms that until now were considered indivisible were constituted by different elements, in these experiments Thomson himself the ratio q / m of several cathodes and always found the same value, which allowed to establish that In atoms there are two types of particles, some of which are mobile and others are still.

When examining his statements the correct one is: He finds the same value of q / m for different materials

Part B

For this part let's use Newton's second law

        F = ma

        q E = m a

        a = q / m E

We use the kinematic relationship

          y = voy t - ½ to t²

          x = v₀ₓ t

The initial vertical velocity of electrons is zero

           y = ½ a (x / v₀ₓ)²

We replace

           y = ½ (q / m) E L² / v₀ₓ²

Part C

If there is no deflection, the electric and magnetic forces are the same and in the opposite direction

         Fm = Fe

         q v B = q E

          v = E / B

Part D

       

        We replace

        y = ½ (q / m) E L² / (E / B)²

         y = ½ (q / m) L² B² / E

If we do not want any deflection the magnetic field has to return the electrons the amount that they lower y = -4.12 cm

      -4.12 10⁻² = ½ q / m 0.12² B² / 1.1 10³

       -16.97 10⁻⁴ = 6.54 10⁻³ B² q / m

      B² = -2.59 10⁻¹ q / m

      q / m = -1.758 10¹¹ C/ kg

      B = √ 0.259 1.758 10¹¹ = √ 4.55 10⁻¹²

      B = 2.13 10⁻⁶ T

Part E

As the charge that the two particles is different

For the first part I have two off-center points.

For the second part I can center one point but the other is off center

Therefore the third statement is correct

8 0
3 years ago
Can someone help me with a science question?
Scrat [10]
What is the question? maybe I can help
8 0
3 years ago
A sphere of mass m" = 2 kg travels with a velocity of magnitude υ") = 8 m/s toward a sphere of mass m- = 3 kg initially at rest,
aleksklad [387]

a) 6.4 m/s

b) 2.1 m

c) 61.6^{\circ}

d) 14.0 N

e) 4.6 m/s

f) 37.9 N

Explanation:

a)

Since the system is isolated (no external forces on it), the total momentum of the system is conserved, so we can write:

p_i = p_f\\m_1 u_1 = m_1 v_1 + m_2 v_2

where:

m_1 = 2 kg is the mass of the 1st sphere

m_2 = 3kg is the mass of the 2nd sphere

u_1 = 8 m/s is the initial velocity of the 1st sphere

v_1 is the final velocity of the 1st sphere

v_2 is the final velocity of the 2nd sphere

Since the collision is elastic, the total kinetic energy is also conserved:

E_i=E_k\\\frac{1}{2}m_1 u_1^2 = \frac{1}{2}m_1 v_1^2 + \frac{1}{2}m_2 v_2^2

Combining the two equations together, we can find the final velocity of the 2nd sphere:

v_2=\frac{2m_1}{m_1+m_2}u_1=\frac{2(2)}{2+3}(8)=6.4 m/s

b)

Now we analyze the 2nd sphere from the moment it starts its motion till the moment it reaches the maximum height.

Since its total mechanical energy is conserved, its initial kinetic energy is entirely converted into gravitational potential energy at the highest point.

So we can write:

KE_i = PE_f

\frac{1}{2}mv^2 = mgh

where

m = 3 kg is the mass of the sphere

v = 6.4 m/s is the initial speed of the sphere

g=9.8 m/s^2 is the acceleration due to gravity

h is the maximum height reached

Solving for h, we find

h=\frac{v^2}{2g}=\frac{(6.4)^2}{2(9.8)}=2.1 m

c)

Here the 2nd sphere is tied to a rope of length

L = 4 m

We know that the maximum height reached by the sphere in its motion is

h = 2.1 m

Calling \theta the angle that the rope makes with the vertical, we can write

h = L-Lcos \theta

Which can be rewritten as

h=L(1-cos \theta)

Solving for \theta, we can find the angle between the rope and the vertical:

cos \theta = 1-\frac{h}{L}=1-\frac{2.1}{4}=0.475\\\theta=cos^{-1}(0.475)=61.6^{\circ}

d)

The motion of the sphere is part of a circular motion. The forces acting along the centripetal direction are:

- The tension in the rope, T, inward

- The component of the weight along the radial direction, mg cos \theta, outward

Their resultant must be equal to the centripetal force, so we can write:

T-mg cos \theta = m\frac{v^2}{r}

where r = L (the radius of the circle is the length of the rope).

However, when the sphere is at the highest point, it is at rest, so

v = 0

Therefore we have

T-mg cos \theta=0

So we can find the tension:

T=mg cos \theta=(3)(9.8)(cos 61.6^{\circ})=14.0 N

e)

We can solve this part by applying again the law of conservation of energy.

In fact, when the sphere is at a height of h = 1 m, it has both kinetic and potential energy. So we can write:

KE_i = KE_f + PE_f\\\frac{1}{2}mv^2 = \frac{1}{2}mv'^2 + mgh'

where:

KE_i is the initial kinetic energy

KE_f is the kinetic energy at 1 m

PE_f is the final potential energy

v = 6.4 m/s is the speed at the bottom

v' is the speed at a height of 1 m

h' = 1 m is the height

m = 3 kg is the mass of the sphere

And solving for v', we find:

v'=\sqrt{v^2-2gh'}=\sqrt{6.4^2-2(9.8)(1)}=4.6 m/s

f)

Again, since the sphere is in circular motion, the equation of the forces along the radial direction is

T-mg cos \theta = m\frac{v^2}{r}

where

T is the tension in the string

mg cos \theta is the component of the weight in the radial direction

m\frac{v^2}{r} is the centripetal force

In this situation we have

v = 4.6 m/s is the speed of the sphere

cos \theta can be rewritten as (see part c)

cos \theta = 1-\frac{h'}{L}

where in this case,

h' = 1 m

L = 4 m

And r=L=4 m is the radius of the circle

Substituting and solving for T, we find:

T=mg cos \theta + m\frac{v^2}{r}=mg(1-\frac{h'}{L})+m\frac{v^2}{L}=\\=(3)(9.8)(1-\frac{1}{4})+(3)\frac{4.6^2}{4}=37.9 N

4 0
3 years ago
What is the state capital of Florida?
Nataly_w [17]

Answer:

Tallahassee

Explanation:

7 0
4 years ago
Read 2 more answers
Other questions:
  • What properties are in semiconductors ​
    8·1 answer
  • How is preparing for a space mission different to planning a camping trip
    14·1 answer
  • NEED HELP FAST. If anybody is great with Geometry or Physical Science, PM me.
    9·1 answer
  • a high speed train travels with an average speed of 250 km/h. the train travels for 2 hrs. how far does the train travel
    10·2 answers
  • A ball is thrown horizontally from the top of a building 109 m high. The ball strikes the ground at a point 75 m horizontally aw
    6·1 answer
  • A 40.0-mH inductor is connected to a North American electrical outlet (ΔVrms = 120 V, f = 60.0 Hz). Assuming the energy stored i
    6·1 answer
  • A= v50cm-v20cm<br> __________________<br> t
    13·1 answer
  • 2. Kymel is competing to see who is the fastest runner on the football team. Kymel uns
    10·1 answer
  • A capoeira é muito mais que uma luta, por isso os campeonatos internos tem o objetivo de: 1 ponto Testar a força dos participant
    8·1 answer
  • How do you think speed affects car and driver safety?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!