Answer:
The speed of electron is
and the speed of proton is 2468.02 m/s.
Explanation:
Given that,
Electric field, E = 560 N/C
To find,
The speed of each particle (electrons and proton) 46.0 ns after being released.
Solution,
For electron,
The electric force is given by :


Let v is the speed of electron. It can be calculated using first equation of motion as :

u = 0 (at rest)



For proton,
The electric force is given by :


Let v is the speed of electron. It can be calculated using first equation of motion as :

u = 0 (at rest)



So, the speed of electron is
and the speed of proton is 2468.02 m/s. Therefore, this is the required solution.
Answer: 17.59 Hz and 4.87 m
Explanation:
The fundamental frequency of the sound from an open-open pipe is given as
f= 
where v= 343 m/s
L= 32 feet=
= 9.75 m
So,
f=
= 17.59 Hz
The length of open-closed tube is related to frequency by formula
f= 
or L=
L= 
L= 4.87 m
Answer:
B. Attract each other with a force of 10 newtons.
Explanation:
Statement is incorrectly written. <em>The correct form is: A </em>
<em> charge and a </em>
<em> at a distance of 0.3 meters. </em>
The two particles have charges opposite to each other, so they attract each other due to electrostatic force, described by Coulomb's Law, whose formula is described below:
(1)
Where:
- Electrostatic force, in newtons.
- Electrostatic constant, in newton-square meters per square coulomb.
- Magnitudes of electric charges, in coulombs.
- Distance between charges, in meters.
If we know that
,
and
, then the magnitude of the electrostatic force is:


In consequence, correct answer is B.
Answer:
a) transferring energy
Explanation:
A linkage is an assembly of parts connected together to control forces and movement. The connections between links are called joints and are used for ensuring movement, pure rotation or sliding.
Linkages provides a means in which kinetic energy is being transferred in different directions within a system. This Linkages can be used to Change force direction, size of force applied or the motion created by the force.
Given that the space station is free of gravitational force, it is required that it spins an certain speed to acquire centripetal acceleration.
In this case, you want that the centripetal acceleration, Ac, equals g (gravitational acceleration on the earth), becasue this will cause a centripetal force equal to the weight on earth.
The formula for centripetal acceleration is Ac = [angular velocity]^2*R
where R = [1/2]50.0m = 25.0 m
Ac = 9.81 m/s^2
=> [angular velocity]^2 = Ac/R = 9.81m/s^2v/ 25.0m = 0.3924 (rad/s)^2
[angular velocity] = √(0.3924) rad/s = 0.63 rad/s
Answer: 0.63 rad/s