Carbohydrates- they are simple and burn quickly, giving you short but fast boosts of energy.
The value of n, the Hill coefficient, for hemoglobin is about 2 to 3 times as great as the value for myoglobin.
Hill Equation
The two closely related equations that help to explain the binding of macromolecules to ligands are called the Hill equation. It helps to quantify the interaction between various ligand binding sites.
Hill coefficient
It is used to describe the cooperativity of ligand binding. It can be positive and negative depending on the value of the Hill coefficient. If the value of the Hill coefficient is more than one then it exhibits positively cooperative binding and if it is less than one then it exhibits negatively cooperative binding. Then there is the noncooperative binding where the Hill coefficient value is one. As for the hemoglobin and myoglobin, the values are,
- Hill coefficient of hemoglobin is 2.7 - 3.
- Hill coefficient of myoglobin is 1.0.
Thus hemoglobin is positively cooperative and myoglobin exhibits noncooperative binding.
Learn more about hemoglobin:
brainly.com/question/15011428
#SPJ4
The answer is Crescent.
<span>During a crescent moon, we see one whole side of the Moon here on Earth.
</span>
<span>New moon -</span><span> the illuminated side of the Moon is away from the Earth. only
the shadowed side can be seen. </span>
><span>Waning gibbous - </span><span>the Moon is less than fully illuminated, but, is more than
half.</span>
<span>>Full Moon - Brightest lunar phase.</span>
Answer: C: Contain chloroplast that perform photosynthesis.
Explanation: Process of elimination deems C correct!
Answer:
For both actin and microtubule polymerization, nucleotide hydrolysis is important for decreasing the binding strength between subunits on filaments.
Explanation:
Cytoskeletal filaments are common to eucaryotic cells and are impotartant to the spatial organization of cells. Intermediate filaments provide mechanical strength and resistance to shear stress. Microtubules determine the positions of membrane-enclosed organelles and direct intracellular transport. Actin filaments determine the shape of the cell's surface and are necessary for whole-cell locomotion. A large number of accessory proteins are present that link the filaments to other cell components, as well as to each other. Accessory proteins are essential for the assembly of the cytoskeletal filaments in particular locations, and it includes the motor proteins that either move organelles along the filaments or move the filaments themselves.
Actin filaments and microtubules are assembled with expenditure of energy i.e the ATP/GTP tightly bound to actin/tubulin is irreversibly hydrolyzed to ADP/GTP during the assembly process, and liberation of Pi in the medium occurs subsequent to the incorporation of subunits in the polymer. Pi release acts as a switch, causing the destabilization of protein-protein interactions in the polymer, therefore regulating the dynamics of these fibres. The progress is made in four areas: the chemistry of the NTPase reaction; the structure of the intermediates in nucleotide hydrolysis and the nature of the conformational switch; the regulation of parameters involved in dynamic instability of microtubules; and the possible involvement of nucleotide hydrolysis in the macroscopic organization of these polymers in highly concentrated solutions, compared with the simple case of a equilibrium polymers.