Answer:
32.6
Step-by-step explanation:
Look at the decimal in the hundredths place in 32.62
If the number is 0-4, round down. If the number is 5-9, round up.
In 32.62, the number in the hundredths place is 2. So, we round down to 32.6
All i know is that if the radius of a circle is 4 feet, the the diameter is 8 feet. Sorry, I don't know the rest.
Answer: [0, 396]
Step-by-step explanation:
The domain is the acceptable values of x in the function. In this case, x = t, the number of tiles. If you think about it, the minimum number of tiles is 0 (you can't have a negative number of tiles), and the maximum number of tiles is 44 (you only have 44 tiles). So, the domain for this function is from 0 to 44.
0 to 44 written in interval notation is [0,44].
The range is the acceptable values of y in the function. In this case, y = A, the area given. A(t) = 9t, so you can use the acceptable values of t to get the range. Again, the minimum area is 0 because you can't have negative area. To find the maximum area, plug in the maximum number of tiles: 9.
A(t) = 9t
A = 9(44)
A = 396
With the maximum number of tiles, 44, the area you get is 396 cm². Therefore, the acceptable values of A are from 0 to 396.
0 to 396 written in interval notation is [0, 396].
we'll start off by grouping some

so we have a missing guy at the end in order to get the a perfect square trinomial from that group, hmmm, what is it anyway?
well, let's recall that a perfect square trinomial is

so we know that the middle term in the trinomial, is really 2 times the other two without the exponent, well, in our case, the middle term is just "x", well is really -x, but we'll add the minus later, we only use the positive coefficient and variable, so we'll use "x" to find the last term.

so, there's our fellow, however, let's recall that all we're doing is borrowing from our very good friend Mr Zero, 0, so if we add (1/2)², we also have to subtract (1/2)²
![\bf \left( x^2 -x +\left[ \cfrac{1}{2} \right]^2-\left[ \cfrac{1}{2} \right]^2 \right)=6\implies \left( x^2 -x +\left[ \cfrac{1}{2} \right]^2 \right)-\left[ \cfrac{1}{2} \right]^2=6 \\\\\\ \left(x-\cfrac{1}{2} \right)^2=6+\cfrac{1}{4}\implies \left(x-\cfrac{1}{2} \right)^2=\cfrac{25}{4}\implies x-\cfrac{1}{2}=\sqrt{\cfrac{25}{4}} \\\\\\ x-\cfrac{1}{2}=\cfrac{\sqrt{25}}{\sqrt{4}}\implies x-\cfrac{1}{2}=\cfrac{5}{2}\implies x=\cfrac{5}{2}+\cfrac{1}{2}\implies x=\cfrac{6}{2}\implies \boxed{x=3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%28%20x%5E2%20-x%20%2B%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2-%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%20%5Cright%29%3D6%5Cimplies%20%5Cleft%28%20x%5E2%20-x%20%2B%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%20%5Cright%29-%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%3D6%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%3D6%2B%5Ccfrac%7B1%7D%7B4%7D%5Cimplies%20%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%3D%5Ccfrac%7B25%7D%7B4%7D%5Cimplies%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Csqrt%7B%5Ccfrac%7B25%7D%7B4%7D%7D%20%5C%5C%5C%5C%5C%5C%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Ccfrac%7B%5Csqrt%7B25%7D%7D%7B%5Csqrt%7B4%7D%7D%5Cimplies%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Ccfrac%7B5%7D%7B2%7D%5Cimplies%20x%3D%5Ccfrac%7B5%7D%7B2%7D%2B%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20x%3D%5Ccfrac%7B6%7D%7B2%7D%5Cimplies%20%5Cboxed%7Bx%3D3%7D)
Answer:
x = 5/3
Step-by-step explanation:
You ALWAYS want your term to be by itself!! So what you need to do is move your constant away from it.
Step 1: Adjust as needed, subtract 10 from both sides of your equation. It should end up like this.
-3x = 5 - 10
Step 2: Solve as needed before continuing equation.
-3x = -5
Step 3: Now you need to get your term by itself. You should divide -3 on both sides of your equation so you should get something like this.
x = -5 / -3
Step 4: You're basically done now! Just simplify! NEGATIVES CROSS EACH OTHER OUT!!!
x = 5/3 OR 1.6
<em>KEY:</em>
<em>Negative and Negative = Positive</em>
<em>Negative and Positive = Negative</em>
<em>Positive and Positive = Positive</em>