Answer:
Volume = 14.333
Step-by-step explanation:
a) We know that the probability Jane will win is 0.2, and draws is 0.3, which leaves the probability of her losing to be 0.5 (1 - 0.2 - 0.3 = 0.5).
I'll begin by filling in for the first game:
win = 0.2, draw = 0.3, lose = 0.5
Next, we'll fill in for if she wins, draws, or loses the second game. The probabilities would be the same as the first game for the second game.
Win (0.2): win = 0.2, draw = 0.3, lose = 0.5
Draw (0.3): win = 0.2, draw = 0.3, lose = 0.5
Lose (0.5): win = 0.2, draw = 0.3, lose = 0.5
b) To find the probability that Jane will win both games, we need to multiply the probability of Jane winning the first game by the probability of her winning the second game.
0.2 x 0.2 = 0.04
Hope this helps! :)
Step-by-step explanation:
-1,355= -1355/1000
-1,352= -1352/1000
Step-by-step explanation:
Derive an expression for the equivalent width in a saturated line. Assume a Voigt profile, with the difference in optical depth between the center of the line and the wings being ~104. The wings of the line can be ignored. Define a frequency x1 = (v1 − v0)/ΔvD, where the optical depth τv = 1. Inside of x1 the line is fully saturated, and outside x1 the line is optically thin. Show that the equivalent width is

Note that the equivalent width is practically insensitive to the number density of absorbing material.
Let’s find some exact values using some well-known triangles. Then we’ll use these exact values to answer the above challenges.
sin 45<span>°: </span>You may recall that an isosceles right triangle with sides of 1 and with hypotenuse of square root of 2 will give you the sine of 45 degrees as half the square root of 2.
sin 30° and sin 60<span>°: </span>An equilateral triangle has all angles measuring 60 degrees and all three sides are equal. For convenience, we choose each side to be length 2. When you bisect an angle, you get 30 degrees and the side opposite is 1/2 of 2, which gives you 1. Using that right triangle, you get exact answers for sine of 30°, and sin 60° which are 1/2 and the square root of 3 over 2 respectively.
Now using the formula for the sine of the sum of 2 angles,
sin(A + B) = sin A cos<span> B</span> + cos A sin B,
we can find the sine of (45° + 30°) to give sine of 75 degrees.
We now find the sine of 36°, by first finding the cos of 36°.
<span>The cosine of 36 degrees can be calculated by using a pentagon.</span>
<span>that is as much as i know about that.</span>